verifiedSCION: Verified Secure Routing

Marco Eilers
Joint work with

Joao C. Pereira, Tobias Klenze, Sofia Giampietro,
Markus Limbeck, Dionysios Spiliopoulos, Felix A. Wolf,
Christoph Sprenger, David Basin, Peter Muller, Adrian Perrig

ETH:zurich

= Internet is a network of Autonomous
SYRICIUERIAS)

=Each AS is a network of routers run by
an institution

= Routes between AS are discovered
using Border Gateway Protocol (BGP)

= Based on trust, for instance, any AS
can announce any IP address range

= There are numerous ways to attack Internet routing

Redirected traffic to UK Atomic Weapons Establishment

Normal

— =In 2013, Ukrainian ISP announced
route prefixes to British Telecom AS

Houston, TX, US
Softlayer

. \ B - Traffic of some UK customers was

\ Frankfurt, DE

gt redirected to Ukraine, including
UK’s Atomic Weapons Establishment

= Senders have no control over the taken routes

= Routers on path can read and modify data

Scion Internet Architecture

,u Chuat - Markus Legner -

= Scion is a new architecture for inter-domain routing L
Path control, e.g., geofencing #
I The Complete

Multipath communication

DDoS protection Guide
| to SCION
= Research and commercial deployments From Design Principls to Formal
Verification

@ Springer

Veriied SCEON

Formal end-to-end verification
of security and correctness

Isolation Domains

ASes are organized
Into isolation domains
with independent
control planes and root
of trust

Scion Routing

= Path exploration ot
Paths are sequences server
of signed hop fields "

Each hop field carries
routing information for
one AS (input and
output ports)

= Path registration with
path server

» Path selection

Path is stored in packet
header

Scion Forwarding

= Path Is stored In
packet header

= Consisting of
up segment,
core segment, and
down segment

Security and Correctness

= Protocol-level properties

Path validity: Constructed paths are valid and reflect the routing decisions by
on-path ASes.

Path authorization: Packets travel only along previously authorized paths
Detectability: An active attacker cannot hide their presence on the path

= Code-level properties
Safety: No run-time errors
Correctness: Routers and servers implement protocol correctly
Progress: Required I/O happens eventually
Secure information flow: Code does not leak information about crypto keys

Mathematical model
of entire network

Refinement

Refinement

Mathematical model
of border router

L]

)
O
c
9
©
2
S
O
L

S0l © e r3'®
.ﬁ 01“ \\\95{' i i‘

otf

‘f‘ ’O"' q_f 30))’ 1”‘ ’
"' "“ 5‘ rlc“,gl‘ﬂ“d‘.‘w_'

Verification ‘ Jf;..&i“"_'; 2 et

Router specification Router implementation

10

Igloo Framework (OOPSLA 20)

Abstract Protocol Model Y
\L stepwise refinement

Concrete Protocol Model = W
\L \L \L decomposition \L \L
ol rol rover 8 v
\L \L translatlon \L assumed v

/O specmcatlon

\L code verification Real

environment

R 4

Router’s code

11

Protocol Models

= Formalize the design model
as transition system

var in: Multiset<Msg>
var out: Multiset<Msg>

initially
in={}
out={}
event process(M, M’)
guard M € in A valid(M) A
reply(M, M’)
action
in:=in\{M}
out := out U {M’}

» Model describes

System:
Border router

Environment:
Network
End hosts
Attacker

12

Stepwise Refinement

= Protocol models are developed by stepwise refinement
= Prove properties of most abstract model

= Each refinement

Incorporates additional system requirements or
environment assumptions

Preserves properties of more-abstract system
|s tool-checked in Isabelle

= Strategy: strengthen attacker while increasing protection of paths

13

Communication channels Hop field format Attacker

Refinement

: Message set T1 [Neighbor ASes Q : Fields protected by MAC

Attacker Model

=|_ocalized, colluding Dolev-Yao attacker model

« Attacker:

Actively controls some ASes
Can observe, block, and inject messages
Can eavesdrop globally

= Cryptography is assumed to be perfect

15

Results of Protocol Verification

= A formal model of the network
components and their environment = |mproved understanding of

» Model serves as formal protocols and properties
specification for the

implementation = Revealed design flaws that enabled
= Proofs of the desired properties five different Security attacks

under the assumption that each

component satisfies its

= |ssues were found during modeling
specification

and formalization
= 16,100 lines (models and proofs)

Mathematical model
of entire network

Refinement

Refinement

Mathematical model
of border router

L]

)
O
c
9
©
2
S
O
L

S0l © e r3'®
.ﬁ 01“ \\\95{' i i‘

otf

‘f‘ ’O"' q_f 30))’ 1”‘ ’
"' "“ 5‘ rlc“,gl‘ﬂ“d‘.‘w_'

Verification ‘ Jf;..&i“"_'; 2 et

Router specification Router implementation

17

Igloo Framework (OOPSLA 20)

Abstract Protocol Model Y
\L stepwise refinement

Concrete Protocol Model = W
\L \L \L decomposition \L \L
oo Rol Rover v
\L \L translatlon \L assumed v

/O specmcatlon

\L code verification Real

environment

R 4

Router’s code

18

Decomposition

=|_ast refinement step must include explicit I/0O events
- components and environment interact only via I/O events

- I/O event represents atomic I/O operation in implementation

var in: Multiset<Msg> event process(M, M’)
var out: Multiset<Msg> var i_buf : Multiset<Msg> guard M € i buf A
var o_buf : Multiset<Msg> valid(M) A
event process(M, M’) reply(M, M’)
guard M € in A event receive(M) action
valid(M) A guard M € in i_buf:=i buf\{M}
reply(M, M’) action o _buf:=o0_buf U {M’}
action in:=in\{M}

in:=in\{M} i_buf :=i_buf U {M} event send(M, Addr)
out ;= out U {M’} :

19

Igloo Framework (OOPSLA 20)

Abstract Protocol Model Y
\L stepwise refinement

Concrete Protocol Model = W
\L \L \L decomposition \L \L
oo Rol Rover v
\L \L translatlon \L assumed v

/O specmcatlon

\L code verification Real

environment

R 4

Router’s code

20

Scion Implementation

= Open-source implementation
35kloc of Go (Router: 4.7kloc)
Uses concurrency, async, globals

= Verify safety, functional correctness,
progress, secure information flow

= Assume correctness of external
libraries, Go compiler, OS, hardware

Beacon Path
server server

Router

External

Scion libraries . :
libraries

Go standard libraries

21

Gobra: Verification for Go (CAV 21)

func indexOf(l [Jint, i, val int) (res int)

requires 0 <= && i < len(l) = No run-time errors
requires forall jint ;. i <= && j < len(l) ==> acc(&I[]])
= No data races

decreases len(l) - i
ensures forall j int :: i <= j &&j < len(l) ==> acc(&I[j 1) = Functional properties

ensures res |= -1 ==>j <=res && res < len(l) && « Termination
, | =|/O behavior
ifl[i] ==val {returni}

elseifi>=len(l)-1 {return-1} = Secure information flow
else { return indexOf(l, i+1, val) }

(forall jint .. i<=j&&j<res==>[[j]!=val) && |[res] == val

{

}

22

Gobra Toolchain

func main(a [Jint) int {
var b int = a[3]

Error: Slice access a[3] might
be out of bounds

Program
translation

Error translation

VIiPER

method main(a: Ref)
returns (res: Int)
requires slice(a) ...
{
var b: Int
b :=lookup(a, 3)

Error: Insufficient permission
to access loc(a, 3).val

Separation Logic
= Associate each heap location with a permission

= Permissions are held by method executions

= Access to a memory location requires permission

func indexOf(l []int, i, val int) (res int)

requires forall jint :: i <= && j < len(l) ==>acc(&I[j])

= Permissions can be transferred, but not duplicated or forged

= Guarantees memory safety, data race freedom, enables local
reasoning

24

/O Permissions

= Permissions can be used to
reason about resources

= Here: permission to perform an
/O operation

func write(value string)

requires writelO(value)

PAS

/O Behavior as Petri Nets

= Adaptation of work by Penninckx et al., write(M)
ESOP 15 valid(M)

= Petri nets specify permitted 1/O behavior T
: : read(M) -valid(M)
Traces of basic |/O operations
Sequences, parallelism, non-determinism

predicate router(T,) {
_ _ vM 3T, T,
= Petri nets are encoded as (recursive) readlO(T ,M,T,) *

predicates

(valid(M) = writelO(T,,M,T,)) *
(7 valid(M) = nop(T,,T,)) *
router(T,)

26

Specification of /0 Behavior

= Basic I/O operations Ll),
Require I/O permission valid(M)
Require token in appropriate place

Advance token T
_valid(M)

read(M)

func write(value string)

requires token(T) * writelO(T, value, T')
ensures token(T’)

predicate router(T,) {
ar : VM 3T, T,
= Method precondition characterizes readlO(T, M,T,) *

permitted I/O behavior (valid(M) = writelO(T,,M,T,)) *
(7 valid(M) = nop(T,,T,)) *

func main() router(T,)

}

requires token(T) * router(T)

27

From Model to I/O Specification

= Refine component model to have an event for each basic |/O operation

I/0 event write(val) func write(value string)

= Encode entire event system as recursive predicate

predicate system(T,, state) {
(Vargs - guard(args, state) =
3T, - oplO(T,,args,T,) * system(T,, state’)) *

event drop(M)
guard —valid(M) predicate router(T,, buf) {

action (VM - 2wvalid(M) = router(T,, buf\{M})) *
buf ;= buf\{ M}

28

Status of Code Verification

» Completed verification of SCION = |dentified 13 confirmed issues
router (4,700 LoC) related to memory safety,
Memory safety functional correctness, and

Functional correctness 1/O behavior
/0 behavior (plus 2 performance issues)

Termination

= Despite extensive code reviews,
= 13,400 lines of annotations testing, and fuzzing
(2.8 LoS per LoC)

= Required only three code changes

Mathematical model Mathematical model
of entire network of border router

Refinement |:|

* Properties encoded in
permission logic

= Developed by
stepwise refinement

= Verified in Isabelle

= Verified in Gobra/Viper

Equivalence

..95‘ MU ot
3 0 ,tri"“‘

o Jeo
2 w e atac“”. 0
Verification - m:: ("rij“‘ﬁ:nfw
g ‘cf" ¢ »'—';‘_“E\‘ ot .
= Transition system e ot
encoded as I/O e L g
" . E 13 (1) * ,
speC|f|cat|on Router specification Router implementation

= \Verified in Isabelle

