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= Internet is a network of Autonomous
SYRICIUERIAS)

=Each AS is a network of routers run by
an institution

= Routes between AS are discovered
using Border Gateway Protocol (BGP)

= Based on trust, for instance, any AS
can announce any IP address range



= There are numerous ways to attack Internet routing

Redirected traffic to UK Atomic Weapons Establishment

Normal

— =In 2013, Ukrainian ISP announced
route prefixes to British Telecom AS

Houston, TX, US
Softlayer

. \ B - Traffic of some UK customers was

\ Frankfurt, DE

gt redirected to Ukraine, including
UK’s Atomic Weapons Establishment

= Senders have no control over the taken routes

= Routers on path can read and modify data



Scion Internet Architecture

,u Chuat - Markus Legner -

= Scion is a new architecture for inter-domain routing L
Path control, e.g., geofencing #
I The Complete

Multipath communication

DDoS protection Guide
| to SCION
= Research and commercial deployments From Design Principls to Formal
Verification

@ Springer




Veriied SCEON

Formal end-to-end verification
of security and correctness



Isolation Domains

ASes are organized
Into isolation domains
with independent
control planes and root
of trust




Scion Routing

= Path exploration ot
Paths are sequences server
of signed hop fields "

Each hop field carries
routing information for
one AS (input and
output ports)

= Path registration with
path server

» Path selection

Path is stored in packet
header




Scion Forwarding

= Path Is stored In
packet header

= Consisting of
up segment,
core segment, and
down segment




Security and Correctness

= Protocol-level properties

Path validity: Constructed paths are valid and reflect the routing decisions by
on-path ASes.

Path authorization: Packets travel only along previously authorized paths
Detectability: An active attacker cannot hide their presence on the path

= Code-level properties
Safety: No run-time errors
Correctness: Routers and servers implement protocol correctly
Progress: Required I/O happens eventually
Secure information flow: Code does not leak information about crypto keys



Mathematical model
of entire network

Refinement

Refinement

Mathematical model
of border router
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Igloo Framework (OOPSLA 20)

Abstract Protocol Model Y
\L stepwise refinement

Concrete Protocol Model = W
\L \L \L decomposition \L \L
ol rol rover 8 v
\L \L translatlon \L assumed v

/O specmcatlon

\L code verification Real

environment

R 4

Router’s code
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Protocol Models

= Formalize the design model
as transition system

var in: Multiset<Msg>
var out: Multiset<Msg>

initially
in={}
out={}
event process(M, M’)
guard M € in A valid(M) A
reply(M, M’)
action
in:=in\{M}
out := out U {M’}

» Model describes

System:
Border router

Environment:
Network
End hosts
Attacker
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Stepwise Refinement

= Protocol models are developed by stepwise refinement
= Prove properties of most abstract model

= Each refinement

Incorporates additional system requirements or
environment assumptions

Preserves properties of more-abstract system
|s tool-checked in Isabelle

= Strategy: strengthen attacker while increasing protection of paths
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Communication channels Hop field format Attacker

Refinement

: Message set T1 [ Neighbor ASes Q : Fields protected by MAC



Attacker Model

=|_ocalized, colluding Dolev-Yao attacker model

« Attacker:

Actively controls some ASes
Can observe, block, and inject messages
Can eavesdrop globally

= Cryptography is assumed to be perfect
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Results of Protocol Verification

= A formal model of the network
components and their environment = |mproved understanding of

» Model serves as formal protocols and properties
specification for the

implementation = Revealed design flaws that enabled
= Proofs of the desired properties five different Security attacks

under the assumption that each

component satisfies its

= |ssues were found during modeling
specification

and formalization
= 16,100 lines (models and proofs)




Mathematical model
of entire network

Refinement

Refinement

Mathematical model
of border router
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Igloo Framework (OOPSLA 20)

Abstract Protocol Model Y
\L stepwise refinement

Concrete Protocol Model = W
\L \L \L decomposition \L \L
oo Rol Rover v
\L \L translatlon \L assumed v

/O specmcatlon

\L code verification Real

environment

R 4

Router’s code
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Decomposition

=|_ast refinement step must include explicit I/0O events
- components and environment interact only via I/O events

- I/O event represents atomic I/O operation in implementation

var in: Multiset<Msg> event process(M, M’)
var out: Multiset<Msg> var i_buf : Multiset<Msg> guard M € i buf A
var o_buf : Multiset<Msg> valid(M) A
event process(M, M’) reply(M, M’)
guard M € in A event receive(M) action
valid(M) A guard M € in i_buf:=i buf\{M}
reply(M, M’) action o _buf:=o0_buf U {M’}
action in:=in\{M}

in:=in\{M} i_buf :=i_buf U {M} event send(M, Addr)
out ;= out U {M’} :
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Igloo Framework (OOPSLA 20)

Abstract Protocol Model Y
\L stepwise refinement

Concrete Protocol Model = W
\L \L \L decomposition \L \L
oo Rol Rover v
\L \L translatlon \L assumed v

/O specmcatlon

\L code verification Real

environment

R 4

Router’s code
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Scion Implementation

= Open-source implementation
35kloc of Go (Router: 4.7kloc)
Uses concurrency, async, globals

= Verify safety, functional correctness,
progress, secure information flow

= Assume correctness of external
libraries, Go compiler, OS, hardware

Beacon Path
server server

Router

External

Scion libraries . :
libraries

Go standard libraries
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Gobra: Verification for Go (CAV 21)

func indexOf(l [ Jint, i, val int) (res int)

requires 0 <= && i < len(l) = No run-time errors
requires forall jint ;. i <= && j < len(l) ==> acc(&I[ ] ])
= No data races

decreases len(l) - i
ensures forall j int :: i <= j &&j < len(l) ==> acc(&I[j 1) = Functional properties

ensures res |= -1 ==>j <=res && res < len(l) && « Termination
, | =|/O behavior
ifl[i] ==val {returni}

elseifi>=len(l)-1 {return-1} = Secure information flow
else { return indexOf(l, i+1, val) }

(forall jint .. i<=j&&j<res==>[[j]!=val) && |[res ] == val

{

}
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Gobra Toolchain

func main(a [ Jint) int {
var b int = a[3]

Error: Slice access a[3] might
be out of bounds

Program
translation

Error translation

VIiPER

method main(a: Ref)
returns (res: Int)
requires slice(a) ...
{
var b: Int
b :=lookup(a, 3)

Error: Insufficient permission
to access loc(a, 3).val




Separation Logic
= Associate each heap location with a permission

= Permissions are held by method executions

= Access to a memory location requires permission

func indexOf(l [ ]int, i, val int) (res int)

requires forall jint :: i <= && j < len(l) ==>acc(&I[ j ])

= Permissions can be transferred, but not duplicated or forged

= Guarantees memory safety, data race freedom, enables local
reasoning
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/O Permissions

= Permissions can be used to
reason about resources

= Here: permission to perform an
/O operation

func write(value string)

requires writelO(value)

PAS



/O Behavior as Petri Nets

= Adaptation of work by Penninckx et al., write(M)
ESOP 15 valid(M)

= Petri nets specify permitted 1/O behavior T
: : read(M) -valid(M)
Traces of basic |/O operations
Sequences, parallelism, non-determinism

predicate router(T,) {
_ _ vM 3T, T,
= Petri nets are encoded as (recursive) readlO(T ,M,T,) *

predicates

(valid(M) = writelO(T,,M,T,)) *
(7 valid(M) = nop(T,,T,)) *
router(T,)
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Specification of /0 Behavior

= Basic I/O operations Ll ),
Require I/O permission valid(M)
Require token in appropriate place

Advance token T
_valid(M)

read(M)

func write(value string)

requires token(T) * writelO(T, value, T')
ensures token(T’)

predicate router(T,) {
ar : VM 3T, T,
= Method precondition characterizes readlO(T, M,T,) *

permitted I/O behavior (valid(M) = writelO(T,,M,T,)) *
(7 valid(M) = nop(T,,T,)) *

func main() router(T,)

}

requires token(T) * router(T)
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From Model to I/O Specification

= Refine component model to have an event for each basic |/O operation

I/0 event write(val) func write(value string)

= Encode entire event system as recursive predicate

predicate system(T,, state) {
(Vargs - guard(args, state) =
3T, - oplO(T,,args,T,) * system(T,, state’)) *

event drop(M)
guard —valid(M) predicate router(T,, buf) {

action (VM - 2wvalid(M) = router(T,, buf\{M})) *
buf ;= buf\{ M}
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Status of Code Verification

» Completed verification of SCION = |dentified 13 confirmed issues
router (4,700 LoC) related to memory safety,
Memory safety functional correctness, and

Functional correctness 1/O behavior
/0 behavior (plus 2 performance issues)

Termination

= Despite extensive code reviews,
= 13,400 lines of annotations testing, and fuzzing
(2.8 LoS per LoC)

= Required only three code changes




Mathematical model Mathematical model
of entire network of border router

Refinement |:|

* Properties encoded in
permission logic

= Developed by
stepwise refinement

= Verified in Isabelle

= Verified in Gobra/Viper
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