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▪ Internet is a network of Autonomous 
Systems (AS)

▪Each AS is a network of routers run by 
an institution

▪Routes between AS are discovered 
using Border Gateway Protocol (BGP)

▪Based on trust, for instance, any AS 
can announce any IP address range



▪There are numerous ways to attack Internet routing

▪Senders have no control over the taken routes

▪Routers on path can read and modify data
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▪ In 2013, Ukrainian ISP announced 
route prefixes to British Telecom AS

▪Traffic of some UK customers was 
redirected to Ukraine, including 
UK’s Atomic Weapons Establishment



Scion Internet Architecture

▪Scion is a new architecture for inter-domain routing
 Path control, e.g., geofencing
 Multipath communication
 DDoS protection

▪Research and commercial deployments
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Formal end-to-end verification 
of security and correctness



Isolation Domains

ASes are organized 
into isolation domains 
with independent 
control planes and root 
of trust
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Scion Routing
▪Path exploration

 Paths are sequences 
of signed hop fields

 Each hop field carries 
routing information for 
one AS (input and 
output ports)

▪Path registration with 
path server
▪Path selection

 Path is stored in packet 
header
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server



Scion Forwarding

▪Path is stored in 
packet header

▪Consisting of 
up segment, 
core segment, and 
down segment
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Security and Correctness
▪Protocol-level properties

 Path validity: Constructed paths are valid and reflect the routing decisions by 
on-path ASes.

 Path authorization: Packets travel only along previously authorized paths
 Detectability: An active attacker cannot hide their presence on the path

▪Code-level properties
 Safety: No run-time errors
 Correctness: Routers and servers implement protocol correctly
 Progress: Required I/O happens eventually
 Secure information flow: Code does not leak information about crypto keys
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Protocol Models
▪Formalize the design model 
as transition system

▪Model describes
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var in: Multiset<Msg>
var out: Multiset<Msg>

initially
  in = { }
  out = { }

event process(M, M’)
  guard  M ∈ in ∧ valid(M) ∧
  reply(M, M’)
  action
    in := in \ { M }
    out := out ∪ {M’}

System:
Border router

Environment:
Network
End hosts
Attacker



Stepwise Refinement
▪Protocol models are developed by stepwise refinement

▪Prove properties of most abstract model

▪Each refinement
 Incorporates additional system requirements or 
environment assumptions

 Preserves properties of more-abstract system
 Is tool-checked in Isabelle

▪Strategy: strengthen attacker while increasing protection of paths
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Attacker Model

▪Localized, colluding Dolev-Yao attacker model

▪Attacker:
 Actively controls some ASes
 Can observe, block, and inject messages
 Can eavesdrop globally

▪Cryptography is assumed to be perfect
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Results of Protocol Verification

▪A formal model of the network 
components and their environment

▪Model serves as formal 
specification for the 
implementation

▪Proofs of the desired properties 
under the assumption that each 
component satisfies its 
specification

▪16,100 lines (models and proofs)
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▪ Improved understanding of 
protocols and properties

▪Revealed design flaws that enabled 
five different security attacks

▪ Issues were found during modeling 
and formalization
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Decomposition
▪Last refinement step must include explicit I/O events

  - components and environment interact only via I/O events
  - I/O event represents atomic I/O operation in implementation
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var in: Multiset<Msg>
var out: Multiset<Msg>

event process(M, M’)
  guard  M ∈ in ∧ 
       valid(M) ∧
  reply(M, M’)
  action
    in := in \ { M }
    out := out ∪ {M’}

…
var i_buf : Multiset<Msg>
var o_buf : Multiset<Msg>

event receive(M)
  guard  M ∈ in   
  action
    in := in \ { M }
    i_buf := i_buf ∪ {M}

event process(M, M’)
  guard  M ∈ i_buf ∧ 
       valid(M) ∧
  reply(M, M’)
  action
    i_buf := i_buf \ { M }
    o_buf := o_buf ∪ {M’}

event send(M, Addr)
  …

Refinement



Igloo Framework (OOPSLA 20)

20

Abstract Protocol Model

Concrete Protocol Model

stepwise refinement

RouterRouterRouter Router Environment

decomposition

I/O specification

translation

Router’s code

code verification Real
environment

assumed

⊧ ψ

⊧ ψ

⊧ ψ

⊧ ψ



Scion Implementation
▪Open-source implementation

 35kloc of Go (Router: 4.7kloc)
 Uses concurrency, async, globals

▪Verify safety, functional correctness, 
progress, secure information flow

▪Assume correctness of external 
libraries, Go compiler, OS, hardware
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Scion libraries

Beacon
server

Path
server

Go standard libraries

External 
libraries
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Gobra: Verification for Go (CAV 21)

▪No run-time errors
▪No data races
▪Functional properties
▪Termination
▪ I/O behavior
▪Secure information flow
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func indexOf(l [ ]int, i, val int) (res int) 
  requires 0 <= i && i < len(l)
  requires forall j int :: i <= j && j < len(l) ==> acc(&l[ j ])

  decreases len(l) - i

  ensures forall j int :: i <= j && j < len(l) ==> acc(&l[ j ])
  ensures res != -1 ==> i <= res && res < len(l) &&
    (forall j int :: i <= j && j < res ==> l[ j ] != val) && l[ res ] == val
{
  if l[ i ] == val       { return i } 
  else if i >= len(l) - 1 { return -1 } 
  else { return indexOf(l, i+1, val) }
}



Gobra Toolchain
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Program
translation

Error translation

func main(a [ ]int) int {
    var b int = a[3]
    …
}

Error: Slice access a[3] might 
be out of bounds

method main(a: Ref)
returns (res: Int)

  requires slice(a) ...
{
  var b: Int
  b := lookup(a, 3)
  …
}

Error: Insufficient permission 
to access loc(a, 3).val

✔
��



Separation Logic
▪Associate each heap location with a permission

▪Permissions are held by method executions

▪Access to a memory location requires permission 

▪Permissions can be transferred, but not duplicated or forged

▪Guarantees memory safety, data race freedom, enables local 
reasoning 24

func indexOf(l [ ]int, i, val int) (res int)
  requires forall j int :: i <= j && j < len(l) ==> acc(&l[ j ])



I/O Permissions

▪Permissions can be used to 
reason about resources

▪Here: permission to perform an 
I/O operation
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func write(value string)
  requires writeIO(value) 



I/O Behavior as Petri Nets
▪Adaptation of work by Penninckx et al., 
ESOP 15

▪Petri nets specify permitted I/O behavior
 Traces of basic I/O operations
 Sequences, parallelism, non-determinism

▪Petri nets are encoded as (recursive) 
predicates
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predicate router(T1) {
  ∀M ∃T2, T3 ∙ 
    readIO(T1,M,T2) *
    (valid(M) ⇒ writeIO(T2,M,T3)) *
    (¬ valid(M) ⇒ nop(T2,T3)) *
    router(T3)
}

read(M)

write(M)

nop

valid(M)

¬valid(M)
T

1
T

2
T

3



read(M)
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Specification of I/O Behavior
▪Basic I/O operations

 Require I/O permission
 Require token in appropriate place
 Advance token

▪Method precondition characterizes 
permitted I/O behavior
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func write(value string)
  requires token(T) * writeIO(T, value, T’)
  ensures token(T’)

func main()
  requires token(T) * router(T)

predicate router(T1) {
  ∀M ∃T2, T3 ∙ 
    readIO(T1,M,T2) *
    (valid(M) ⇒ writeIO(T2,M,T3)) *
    (¬ valid(M) ⇒ nop(T2,T3)) *
    router(T3)
}



From Model to I/O Specification
▪Refine component model to have an event for each basic I/O operation

▪Encode entire event system as recursive predicate
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event drop(M)
guard ¬valid(M) 
action
  buf := buf \ { M }

I/O event write(val)

predicate router(T1, buf) {
  (∀M ∙ ¬valid(M) ⇒ router(T1, buf \ { M })) *  
  …

func write(value string)

predicate system(T1, state) {
  (∀args ∙ guard(args, state) ⇒ 

   ∃T2 ∙ opIO(T1,args,T2) * system(T2, state’)) *
  …



Status of Code Verification
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▪Completed verification of SCION 
router (4,700 LoC)

 Memory safety
 Functional correctness
 I/O behavior
 Termination

▪13,400 lines of annotations 
(2.8 LoS per LoC)

▪Required only three code changes

▪ Identified 13 confirmed issues 
related to memory safety, 
functional correctness, and 
I/O behavior
(plus 2 performance issues)

▪Despite extensive code reviews, 
testing, and fuzzing



Refinement
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