
verifiedSCION: Verified Secure Routing

Marco Eilers
Joint work with
João C. Pereira, Tobias Klenze, Sofia Giampietro,
Markus Limbeck, Dionysios Spiliopoulos, Felix A. Wolf,
Christoph Sprenger, David Basin, Peter Müller, Adrian Perrig

2

▪ Internet is a network of Autonomous
Systems (AS)

▪Each AS is a network of routers run by
an institution

▪Routes between AS are discovered
using Border Gateway Protocol (BGP)

▪Based on trust, for instance, any AS
can announce any IP address range

▪There are numerous ways to attack Internet routing

▪Senders have no control over the taken routes

▪Routers on path can read and modify data

3

▪ In 2013, Ukrainian ISP announced
route prefixes to British Telecom AS

▪Traffic of some UK customers was
redirected to Ukraine, including
UK’s Atomic Weapons Establishment

Scion Internet Architecture

▪Scion is a new architecture for inter-domain routing
 Path control, e.g., geofencing
 Multipath communication
 DDoS protection

▪Research and commercial deployments

4

Formal end-to-end verification
of security and correctness

Isolation Domains

ASes are organized
into isolation domains
with independent
control planes and root
of trust

6

Scion Routing
▪Path exploration

 Paths are sequences
of signed hop fields

 Each hop field carries
routing information for
one AS (input and
output ports)

▪Path registration with
path server
▪Path selection

 Path is stored in packet
header

7

Path
server

Scion Forwarding

▪Path is stored in
packet header

▪Consisting of
up segment,
core segment, and
down segment

8

Security and Correctness
▪Protocol-level properties

 Path validity: Constructed paths are valid and reflect the routing decisions by
on-path ASes.

 Path authorization: Packets travel only along previously authorized paths
 Detectability: An active attacker cannot hide their presence on the path

▪Code-level properties
 Safety: No run-time errors
 Correctness: Routers and servers implement protocol correctly
 Progress: Required I/O happens eventually
 Secure information flow: Code does not leak information about crypto keys

9

10

Mathematical model
of entire network

Mathematical model
of border router

Router implementationRouter specification

Refinement

Eq
u

iv
al

en
ce

Verification

Refinement

Igloo Framework (OOPSLA 20)

11

Abstract Protocol Model

Concrete Protocol Model

stepwise refinement

RouterRouterRouter Router Environment

decomposition

I/O specification

translation

Router’s code

code verification Real
environment

assumed

⊧ ψ

⊧ ψ

⊧ ψ

⊧ ψ…

Protocol Models
▪Formalize the design model
as transition system

▪Model describes

12

var in: Multiset<Msg>
var out: Multiset<Msg>

initially
 in = { }
 out = { }

event process(M, M’)
 guard M ∈ in ∧ valid(M) ∧
 reply(M, M’)
 action
 in := in \ { M }
 out := out ∪ {M’}

System:
Border router

Environment:
Network
End hosts
Attacker

Stepwise Refinement
▪Protocol models are developed by stepwise refinement

▪Prove properties of most abstract model

▪Each refinement
 Incorporates additional system requirements or
environment assumptions

 Preserves properties of more-abstract system
 Is tool-checked in Isabelle

▪Strategy: strengthen attacker while increasing protection of paths

13

14

A

Communication channels Hop field format Attacker

(,A,)

: Neighbor ASes

R
ef

in
em

en
t

: Fields protected by MAC: Message set

(,A,)

A
(,A,)

Attacker Model

▪Localized, colluding Dolev-Yao attacker model

▪Attacker:
 Actively controls some ASes
 Can observe, block, and inject messages
 Can eavesdrop globally

▪Cryptography is assumed to be perfect

15

X

Y

Results of Protocol Verification

▪A formal model of the network
components and their environment

▪Model serves as formal
specification for the
implementation

▪Proofs of the desired properties
under the assumption that each
component satisfies its
specification

▪16,100 lines (models and proofs)

16

▪ Improved understanding of
protocols and properties

▪Revealed design flaws that enabled
five different security attacks

▪ Issues were found during modeling
and formalization

17

Mathematical model
of entire network

Mathematical model
of border router

Router implementationRouter specification

Refinement

Eq
u

iv
al

en
ce

Verification

Refinement

Igloo Framework (OOPSLA 20)

18

Abstract Protocol Model

Concrete Protocol Model

stepwise refinement

RouterRouterRouter Router Environment

decomposition

I/O specification

translation

Router’s code

code verification Real
environment

assumed

⊧ ψ

⊧ ψ

⊧ ψ

⊧ ψ

Decomposition
▪Last refinement step must include explicit I/O events

 - components and environment interact only via I/O events
 - I/O event represents atomic I/O operation in implementation

19

var in: Multiset<Msg>
var out: Multiset<Msg>

event process(M, M’)
 guard M ∈ in ∧
 valid(M) ∧
 reply(M, M’)
 action
 in := in \ { M }
 out := out ∪ {M’}

…
var i_buf : Multiset<Msg>
var o_buf : Multiset<Msg>

event receive(M)
 guard M ∈ in
 action
 in := in \ { M }
 i_buf := i_buf ∪ {M}

event process(M, M’)
 guard M ∈ i_buf ∧
 valid(M) ∧
 reply(M, M’)
 action
 i_buf := i_buf \ { M }
 o_buf := o_buf ∪ {M’}

event send(M, Addr)
 …

Refinement

Igloo Framework (OOPSLA 20)

20

Abstract Protocol Model

Concrete Protocol Model

stepwise refinement

RouterRouterRouter Router Environment

decomposition

I/O specification

translation

Router’s code

code verification Real
environment

assumed

⊧ ψ

⊧ ψ

⊧ ψ

⊧ ψ

Scion Implementation
▪Open-source implementation

 35kloc of Go (Router: 4.7kloc)
 Uses concurrency, async, globals

▪Verify safety, functional correctness,
progress, secure information flow

▪Assume correctness of external
libraries, Go compiler, OS, hardware

21

Scion libraries

Beacon
server

Path
server

Go standard libraries

External
libraries

Router

Gobra: Verification for Go (CAV 21)

▪No run-time errors
▪No data races
▪Functional properties
▪Termination
▪ I/O behavior
▪Secure information flow

22

func indexOf(l []int, i, val int) (res int)
 requires 0 <= i && i < len(l)
 requires forall j int :: i <= j && j < len(l) ==> acc(&l[j])

 decreases len(l) - i

 ensures forall j int :: i <= j && j < len(l) ==> acc(&l[j])
 ensures res != -1 ==> i <= res && res < len(l) &&
 (forall j int :: i <= j && j < res ==> l[j] != val) && l[res] == val
{
 if l[i] == val { return i }
 else if i >= len(l) - 1 { return -1 }
 else { return indexOf(l, i+1, val) }
}

Gobra Toolchain

23

Program
translation

Error translation

func main(a []int) int {
 var b int = a[3]
 …
}

Error: Slice access a[3] might
be out of bounds

method main(a: Ref)
returns (res: Int)

 requires slice(a) ...
{
 var b: Int
 b := lookup(a, 3)
 …
}

Error: Insufficient permission
to access loc(a, 3).val

✔
��

Separation Logic
▪Associate each heap location with a permission

▪Permissions are held by method executions

▪Access to a memory location requires permission

▪Permissions can be transferred, but not duplicated or forged

▪Guarantees memory safety, data race freedom, enables local
reasoning 24

func indexOf(l []int, i, val int) (res int)
 requires forall j int :: i <= j && j < len(l) ==> acc(&l[j])

I/O Permissions

▪Permissions can be used to
reason about resources

▪Here: permission to perform an
I/O operation

25

func write(value string)
 requires writeIO(value)

I/O Behavior as Petri Nets
▪Adaptation of work by Penninckx et al.,
ESOP 15

▪Petri nets specify permitted I/O behavior
 Traces of basic I/O operations
 Sequences, parallelism, non-determinism

▪Petri nets are encoded as (recursive)
predicates

26

predicate router(T1) {
 ∀M ∃T2, T3 ∙
 readIO(T1,M,T2) *
 (valid(M) ⇒ writeIO(T2,M,T3)) *
 (¬ valid(M) ⇒ nop(T2,T3)) *
 router(T3)
}

read(M)

write(M)

nop

valid(M)

¬valid(M)
T

1
T

2
T

3

read(M)

write(M)

nop

valid(M)

¬valid(M)
T

1
T

2
T

3

Specification of I/O Behavior
▪Basic I/O operations

 Require I/O permission
 Require token in appropriate place
 Advance token

▪Method precondition characterizes
permitted I/O behavior

27

func write(value string)
 requires token(T) * writeIO(T, value, T’)
 ensures token(T’)

func main()
 requires token(T) * router(T)

predicate router(T1) {
 ∀M ∃T2, T3 ∙
 readIO(T1,M,T2) *
 (valid(M) ⇒ writeIO(T2,M,T3)) *
 (¬ valid(M) ⇒ nop(T2,T3)) *
 router(T3)
}

From Model to I/O Specification
▪Refine component model to have an event for each basic I/O operation

▪Encode entire event system as recursive predicate

28

event drop(M)
guard ¬valid(M)
action
 buf := buf \ { M }

I/O event write(val)

predicate router(T1, buf) {
 (∀M ∙ ¬valid(M) ⇒ router(T1, buf \ { M })) *
 …

func write(value string)

predicate system(T1, state) {
 (∀args ∙ guard(args, state) ⇒

 ∃T2 ∙ opIO(T1,args,T2) * system(T2, state’)) *
 …

Status of Code Verification

29

▪Completed verification of SCION
router (4,700 LoC)

 Memory safety
 Functional correctness
 I/O behavior
 Termination

▪13,400 lines of annotations
(2.8 LoS per LoC)

▪Required only three code changes

▪ Identified 13 confirmed issues
related to memory safety,
functional correctness, and
I/O behavior
(plus 2 performance issues)

▪Despite extensive code reviews,
testing, and fuzzing

Refinement

30

Mathematical model
of entire network

Mathematical model
of border router

Router implementationRouter specification

Refinement

Eq
u

iv
al

en
ce

Verification

▪ Developed by
stepwise refinement
▪ Verified in Isabelle

▪ Properties encoded in
permission logic
▪ Verified in Gobra/Viper

▪ Transition system
encoded as I/O
specification
▪ Verified in Isabelle

