Scenario-Based Proofs
for Concurrent Objects

Eric Koskinen * FRIDA 2024 - July 23, 2024 Joint work with Constantin Enea (E.P)

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

Module Saturn

Domain-safe data structures for Multicore OCaml

Concurrent Objects

module Queue
module Stack
module Work stealing_deque =

module Single _prod_single_cons_queue =

Java™ Platform

OVERVIEW | .@<.ci== CLASS USE TREE DEPRECATED INDEX HELP Standard Ed. 8
intel. PRODUCTS SUPPORT SOLUTIONS MORE + R @ enoust Q) search Intel.com
PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES ALL CLASSES
Developers v Tools v oneAPI| v Components v Intel® oneAPI Threading Building Blocks v =~ concurrent_hash_map

Package java.util.concurrent

Utility classes commonly useful in concurrent programming.

See: Description Intel® one API| Threading Building Blocks Developer

Guide and AP| Reference

Interface Summary View More v. ———
Interface Description
BlockingDeque<E> A Deque that additionally supports blocking operations

that wait for the deque to become non-empty when
retrieving an element, and wait for space to become
available in the deque when storing an element.

Q. Search this document

BlockingQueue<E> A Queue that additionally supports operations that wait
for the queue to become non-empty when retrieving an Document Table of Contents -
element, and wait for space to become available in the
queue when storing an element.

concurrent_hash_map

Callable<V> A task that returns a result and may throw an exception.

produced by async methods. concurrent_hash_map

CompletionService<V> A service that decouples the production of new A concurrent_hash_map<Key, T, HashCompare >is a hash table that permits concurrent
asynchronous tasks from the consumption of the results accesses. The table is a map from a key to a type T. The traits type HashCompare defines how to

o mle o Lrons s v ol Lo svnns deon 2% o vt v o g 3en 2 zonm Lorsns son

Concurrent Objects

OVERVIEW ||7-®<\c/4 CLASS USE TREE DEPRECATED INDEX HELP Tal¢=\ll PRODUCTS SUPPORT SOLUTIONS MORE + Q Peoasi Q) searc Module Saturn

PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES ALL CLASSES Developers v Tools v oneAPI v Components v Intel® oneAPI Threading Building Blocks v ' concurrent_hash_map Domain-safe data structures for Multicore OCaml

Package java.util.concurrent
g9¢) Intel® one API| Threading Building Blocks Developer
Utility classes commonly useful in concurrent programming. EuidarE AR Betarerae

Data structures

See: Description View More v module Queue =

4 STEVENS INSTITUTE of TECHNOLOGY

Concurrent Objects

Even Better DCAS-Based Concurrent Deques

David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite,
Paul A. Martin, Nir N. Shavit, and Guy L. Steele Jr.

Sun Microsystems Laboratories, 1 Network Drive, Burlington, MA 01803 USA

Abstract. The computer industry is examining the use of strong syn-
chronization operations such as double compare-and-swap (DCAS) as a
means of supporting non-blocking synchronization on tomorrow’s mul-
tiprocessor machines. However, before such a primitive will be incorpo-
rated into hardware design, its utility needs to be proven by developing
a body of effective non-blocking data structures using DCAS.

In a previous paper, we presented two linearizable non-blocking imple-
mentations of concurrent deques (double-ended queues) using the DCAS
operation. These improved on previous algorithms by nearly always al-
lowing unimpeded concurrent access to both ends of the deque while
correctly handling the difficult boundary cases when the deque is empty
or full. A remaining open question was whether, using DCAS, one can
design a non-blocking implementation of concurrent deques that allows
dynamic memory allocation but also uses only a single DCAS per push
or pop in the best case.

This paper answers that question in the affirmative. We present a new
non-blocking implementation of concurrent deques using the DCAS op-
eration. This algorithm provides the benefits of our previous techniques
while overcoming drawbacks. Like our previous approaches, this imple-
mentation relies on automatic storage reclamation to ensure that a stor-
age node is not reclaimed and reused until it can be proved that the
* STEVEN node is not reachable from any thread of control. This algorithm uses
a linked-list representation with dynamic node allocation and therefore
does not impose a fixed maximum capacity on the deque. It does not

!!!!!!!! 4']’\!\ R Tearlal l\‘p PaY “n“r\v‘r\ k:"-” ;“ V\r\:“*'r\v-ﬂ T“ "l’\r\ 1‘\{\"\"' Y Tarlal /Y\I\ :Y*‘I\V‘pl'\'l‘

Concurrent Objects

4 STEVEN

Even Better DCAS-Based Concurrent L]

Sun Microsystems Laboratories, 1 Network Drive, Burlington, MA 0180

David L. Detlefs, Christine H. Flood, Alexander T. Garthv
Paul A. Martin, Nir N. Shavit, and Guy L. Steele Jr.

Abstract. The computer industry is examining the use of strong syn-
chronization operations such as double compare-and-swap (DCAS) as a
means of supporting non-blocking synchronization on tomorrow’s mul-
tiprocessor machines. However, before such a primitive will be incorpo-
rated into hardware design, its utility needs to be proven by developing
a body of effective non-blocking data structures using DCAS.

In a previous paper, we presented two linearizable non-blocking imple-
mentations of concurrent deques (double-ended queues) using the DCAS
operation. These improved on previous algorithms by nearly always al-
lowing unimpeded concurrent access to both ends of the deque while
correctly handling the difficult boundary cases when the deque is empty
or full. A remaining open question was whether, using DCAS, one can
design a non-blocking implementation of concurrent deques that allows
dynamic memory allocation but also uses only a single DCAS per push
or pop in the best case.

This paper answers that question in the affirmative. We present a new
non-blocking implementation of concurrent deques using the DCAS op-
eration. This algorithm provides the benefits of our previous techniques
while overcoming drawbacks. Like our previous approaches, this imple-
mentation relies on automatic storage reclamation to ensure that a stor-
age node is not reclaimed and reused until it can be proved that the
node is not reachable from any thread of control. This algorithm uses
a linked-list representation with dynamic node allocation and therefore
does not impose a fixed maximum capacity on the deque. It does not

DCAS is not a Silver Bullet for Nonblocking Algorithm
Design

Simon Doherty*1 David L. Detlefs!

Lindsay Groves* Christine H. Flood!

Victor Luchangcot Paul A. Martint ~ Mark Moir? Nir Shavitt Guy L. Steele Jr.t

YWictoria University of Wellington, PO Boxz 600, Wellington, New Zealand
TSun Microsystems Laboratories, 1 Network Drive, Burlington, Massachusetts, USA

ABSTRACT

Despite years of research, the design of efficient nonblocking
algorithms remains difficult. A key reason is that current
shared-memory multiprocessor architectures support only
single-location synchronisation primitives such as compare-

and-swap (CAS) and load-linked/store-conditional (LL/SC).

Recently researchers have investigated the utility of double-

- e A I ”n N A N .

1. INTRODUCTION

The traditional approach to designing concurrent algo-
rithms and data structures is to use locks to protect data
from corruption by concurrent updates. The use of locks en-
ables algorithm designers to develop concurrent algorithms
based closely on their sequential counterparts. However,
several well-known problems are associated with the use of

) DR P T B s b DS P A, (R [T

Concurrent Objects

Checking a Multithreaded Algorithn
with T CAL

Leslie Lamport

Microsoft Research

Even Better DCAS-Based Concurrent 1
11 Jul 2006

David L. Detlefs, Christine H. Flood, Alexander T. Garthv
Paul A. Martin, Nir N. Shavit, and Guy L. Steele Jr.

To appear in DISC 2006
Sun Microsystems Laboratories, 1 Network Drive, Burlington, MA 0180

Abstract. The computer industry is examining the use of strong syn-
chronization operations such as double compare-and-swap (DCAS) as a
means of supporting non-blocking synchronization on tomorrow’s mul-
tiprocessor machines. However, before such a primitive will be incorpo-
rated into hardware design, its utility needs to be proven by developing
a body of effective non-blocking data structures using DCAS.

In a previous paper, we presented two linearizable non-blocking imple-
mentations of concurrent deques (double-ended queues) using the DCAS
operation. These improved on previous algorithms by nearly always al-
lowing unimpeded concurrent access to both ends of the deque while DCAS |
correctly handling the difficult boundary cases when the deque is empty
or full. A remaining open question was whether, using DCAS, one can
design a non-blocking implementation of concurrent deques that allows
dynamic memory allocation but also uses only a single DCAS per push Simon D
or pop in the best case. Victor Luch
This paper answers that question in the affirmative. We present a new
non-blocking implementation of concurrent deques using the DCAS op-
eration. This algorithm provides the benefits of our previous techniques
while overcoming drawbacks. Like our previous approaches, this imple-
mentation relies on automatic storage reclamation to ensure that a stor- ABSTRACT 1. INTRODUCTION

Abstract

A colleague told me about a multithreaded algorithm that was later
reported to have a bug. I rewrote the algorithm in the TCAL algorithm
language, ran the TLC model checker on it, and found the error. Pro-

grams are not released without being tested; why should algorithms
be published without being model checked?

YWictoria University of Wellington, PO Boxz 600, Wellington, New Zealand
TSun Microsystems Laboratories, 1 Network Drive, Burlington, Massachusetts, USA

4 STEVEN

age node is not reclaimed and reused until it can be proved that the
node is not reachable from any thread of control. This algorithm uses
a linked-list representation with dynamic node allocation and therefore
does not impose a fixed maximum capacity on the deque. It does not

Despite years of research, the design of efficient nonblocking
algorithms remains difficult. A key reason is that current
shared-memory multiprocessor architectures support only
single-location synchronisation primitives such as compare-

and-swap (CAS) and load-linked/store-conditional (LL/SC).

Recently researchers have investigated the utility of double-

- e A I ”n N A N .

The traditional approach to designing concurrent algo-
rithms and data structures is to use locks to protect data
from corruption by concurrent updates. The use of locks en-
ables algorithm designers to develop concurrent algorithms
based closely on their sequential counterparts. However,
several well-known problems are associated with the use of

) DR P T B s b DS P A, (R [T

S0 we need more rigorous guarantees.

Michael-Scott Queue

4 STEVENS INSTITUTE of TECHN

Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms*

Maged M. Michael

Michael L. Scott

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226
{michael, scott}@cs.rochester.edu

Abstract

Drawing ideas from previous authors, we present a new
non-blocking concurrent queue algorithm and a new two-
lock queue algorithm in which one enqueue and one de-
queue can proceed concurrently. Both algorithms are sim-
ple, fast, and practical; we were surprised not to find them
in the literature. Experiments on a 12-node SGI Challenge
multiprocessor indicate that the new non-blocking queue
consistently outperforms the best known alternatives; it is
the clear algorithm of choice for machines that provide a
universal atomic primitive (e.g. compare_and_swap Or
load.linked/store_.conditional). The two-lock
concurrent queue outperforms a single lock when several
processes are competing simultaneously for access; it ap-
pears to be the algorithm of choice for busy queues on ma-
chines with non-universal atomic primitives (e.g. test.
and_set). Since much of the motivation for non-blocking
aleorithms is rooted in their immunitv to laree. unore-

1 Introduction

Concurrent FIFO queues are widely used in parallel ap-
plications and operating systems. To ensure correctness,
concurrent access to shared queues has to be synchronized.
Generally, algorithms for concurrent data structures, in-
cluding FIFO queues, fall into two categories: blocking
and non-blocking. Blocking algorithms allow a slow or de-
layed process to prevent faster processes from completing
operations on the shared data structure indefinitely. Non-
blocking algorithms guarantee that if there are one or more
active processes trying to perform operations on a shared
data structure, some operation will complete within a finite
number of time steps. On asynchronous (especially multi-
programmed) multiprocessor systems, blocking algorithms
suffer significant performance degradation when a process
is halted or delayed at an inopportune moment. Possible
sources of delay include processor scheduling preemption,
page faults, and cache misses. Non-blocking algorithms

are maore rohtict 1n the fare of thece suante

Michael-Scott Queue

1int eng(int v){ loop {
node_t *node=...;
node->val=v;
tail=0Q.tail;
next=tail ->next;
if (Q.tail==tail) {
1f (next==null) {
if (CAS(&tail->next,
next,node))

10 ret 1;

11} })} }

O O 1 O U1 o W DN

Enqueuer i

v v -" *i

— X =P Xy P X3

Michael-Scott Queue

1int eng(int v){ loop {

Factored out tail advancement:

2 node_t *node=...;

3 node->val=v;

4 tail=Q.tail; ladV§>{ loop {

5 next=tail->next; 2 ta11=Q.Fa11;

6 if (Q.tail==tail) { 3 ?ext=ta11->next;

7 1f (next==null) { 4 1f (next!=nu11)€

8 if (CAS(&tail->next, > 1f (FAS(&Q‘>t311,

9 next,node)) 6 tail,next))

10 ret 1; ; } ret 0;

11} } } } 01 1
head tail Sreners head tail Advance the tail
— X; - Xy | X3 —> X - X, — X3 —> X, H

Michael-Scott Queue

1 int deg(){ loop {
int pval;
head=Q. head; tail=Q.tail;
next=head->next;
i1f (Q.head==head) {
1f (head==tail) {
i1f (next==null) ret 0;
} else {
pval=next->val;
if (CAS(&Q->head,
head, next))
ret pval;

13y r)} }

O O 3 O U1 o W N

ek e
N = O

Enqueuer i :
head tail ! head tail Advance the tail

wl i
v Y_(cAs3-~ v =

—> X - Xy | X3 —> X - Xy —P X3 —> X;

_I

Michael-Scott Queue

1int degq(){ loop { Factored out tail advancement:
1int enq(int v){ loop { 2 1nt pval;
2 node_t *node=...; 3 head=Q.head;tail=Q.tail;
3 node->val=v; 4 next=head->next;
4 tail=Q.tail; 5 1f (Q.head==head) { ladvf>{ 100? {
5 next=tail ->next; 6 1f (head==tail) { 2 ta11=Q.Fa11;
6 if (Q.tail==tail) { 7 if (next==null) ret 0; 3 next=tail->next;
7 1f (next==null) { 8 } else { 4 1f (”eXt!=”“11)?
8 if (CAS(&tail->next, 9 pval=next->val;) Lt (FAS(&Q->ta11,
9 next,node)) 10 i1f (CAS(&Q->head, 6 tail,next))
10 ret 1: 11 head , next)) 7 ret o
11} } } } 12 ret pval; 8)
13 33} }) 2

Enqueuer i :
head tail ! head tail Advance the tail

wl i
v Y_(cAs3-~ v =

—> X - Xy | X3 —> X - Xy —P X3 —> X;

_I

Proving Linearizability

Owicki/Gries
Rely/Gaurantee

Concurrent Separation Logic
RGSep

Deny-Guarantee

Views

IriS

Many others ...

4 STEVENS INSTITUTE of TECHNOLOGY

befinition queuel := #[GFunctor setUR].

Instance subG lockPool {2} : subG queuel X - queueG 2.
Proof. solve inG. Qed.

Section queue refinement.
Context ~{relocG X, queueG 1}.

Lemma refines load alt KE 1 t A :
(|={TIE}=> iv' q,
>(1 »{q} v') =
>(1 »{gq} v' - (REL fill K (of val v') << t @
-+ REL fill K (! #l1) << t : A.
Proof.
iIntros "Hlog".
iApply refines atomic 1; auto.
iMod "Hlog" as (v' gq) "[Hl Hlog]". iModIntro.
iApply (wp load with "H1"); auto.
Oed.

Tactic Notation "rel load 1 atomic”
Definition isNode ¢n x ({nOut : loc) : iProp X :=

(* Length indexed reachable *)
Fixpoint reachable 1 (n : nat) {n {m : iProp 2 :=
d x ({nOut : loc), {n »O CONSV x #{nOut =

:= rel apply 1 refines load alt.

{n » SOMEV (x, #{nOut).

(match n with
| 0 => "¢n = (m”

| s n' => (3 (¢{p : loc), ¢nOut ~»O #!{p * reachable 1 nf
end) .
Definition reachable ¢{n {m : iProp 2 := 1 n, reachable 1
Notation "a ~r~> b" := (reachable a b) (at level 20, fornm

Lemma reachable refl x ({m {mOut :

Proof. iIntros "p". 1Exists 0.

loc) : ¢m »J CONSV x #
iExistsFrame. Qed.

Instance reachable persistent a b: Persistent (a ~r~> b).

Proof.
rewrite /Persistent.
iDestruct 1 as (n) "R". iInduction n as [|n] "IH" forall

- iDestruct "R" as "#R". iModIntro. by iExists 0.

(a).

What did Michael/Scott say?

What did Michael/Scott say?

They describe “scenarios”

4 STEVENS INSTITUTE of TECHNOLOGY

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that] the CAS succeeds.

4 STEVENS INSTITUTE of TECHNOLOGY

* Actually this prose from Herlihy/Shavit TAOMPP.

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

4 STEVENS INSTITUTE of TECHNOLOGY

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

“queue is nonempty, “tail is lagged”

“some other thread”

“only then”

“reads tail, and finds the node that appears
to be last (Lines 12-13)”

“If this method returns a value, then its lin-

earization point occurs when it completes

4 sTevens INsTITUTE of TEcunoLoay @ successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

“queue is nonempty, “tail is lagged”

Important ADT states

“some other thread”

“only then”

“reads tail, and finds the node that appears
to be last (Lines 12-13)”

“If this method returns a value, then its lin-

earization point occurs when it completes

4 sTevens INsTITUTE of TEcunoLoay @ successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

“queue is nonempty, “tail is lagged”

Important ADT states

“some other thread” Concurrent threads
“only then”

“reads tail, and finds the node that appears
to be last (Lines 12-13)”

“If this method returns a value, then its lin-

earization point occurs when it completes

4 sTevens INsTITUTE of TEcunoLoay @ successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

“queue is nonempty, “tail is lagged”

Important ADT states
“some other thread” Concurrent threads
“only then” Event Order

“reads tail, and finds the node that appears
to be last (Lines 12-13)”

“If this method returns a value, then its lin-

earization point occurs when it completes

4 sTevens INsTITUTE of TEcunoLoay @ successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

“queue is nonempty, “tail is lagged”

Important ADT states
“some other thread” Concurrent threads
“only then” Event Order

“reads tail, and finds the node that appears

to be last (Lines 12-13)” Thread-local step sequence

“If this method returns a value, then its lin-

earization point occurs when it completes

4 sTevens INsTITUTE of TEcunoLoay @ successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.

What did Michael/Scott say?

They describe “scenarios”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

“queue is nonempty, “tail is lagged”

Important ADT states
“some other thread” Concurrent threads
“only then” Event Order

“reads tail, and finds the node that appears

to be last (Lines 12-13)” Thread-local step sequence

“If this method returns a value, then its lin- _ _ _ .

earization point occurs when it completes | LINn€arization points

4 sTevens INsTITUTE of TEcunoLoay @ successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.

Why can’t proofs be more
“scenario” orientated?

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

2. There is a distinguished thread, let’s call tenq.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

2. There is a distinguished thread, let’s call tenq.

3. Tenq reads the tail and the tail’s next pointer.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

2. There is a distinguished thread, let’s call tenq.
3. Tenq reads the tail and the tail’s next pointer.

4. tenqg finds that tail’s next is null.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts

to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

Unboundedly many threads are reading the data structure.

. There Is a distinguished thread, let’s call tenq.

1.
2
3. Tenq reads the tail and the tail’s next pointer.
4. tenq finds that tail’s next is null.

5

. Tenqg atomically updates tail’s next to point to its new node.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts

to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

Unboundedly many threads are reading the data structure.

. There Is a distinguished thread, let’s call tenq.

. Tenqg reads the tail and the tail’'s next pointer.

1.

2

3

4. tenq finds that tail’s next is null.

5. Tenq atomically updates tail’'s next to point to its new node.
6

. The other (unboundedly many) threads fail their CASes on tail’s next and restart.

4 STEVENS INSTITUTE of TECHNOLOGY

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts

to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

Unboundedly many threads are reading the data structure.

. There Is a distinguished thread, let’s call tenq.

. Tenqg reads the tail and the tail’'s next pointer.

1.

2

3

4. tenq finds that tail’s next is null.

5. Tenq atomically updates tail’'s next to point to its new node.
6

. The other (unboundedly many) threads fail their CASes on tail’s next and restart.

ext = (T € T : read + Teng : read)” - (Teng : cas/succeed) - (7 € T : restart)”

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts

to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

2. There is a distinguished thread, let’s call tenq.

3. Tenq reads the tail and the tail’s next pointer.

4. Tenq finds that tail’s next is null. And two others:
5. Tenq atomically updates tail’'s next to point to its ne "tail = - - -

6. The other (unboundedly many) threads fail their C4 "head = - -

ext = (T € T : read + Teng : read)” - (Teng : cas/succeed) - (7 € T : restart)”

Benefits

K

(’”next T Itail T ’”head)

 Concise. MSQ’s concurrent executions can be
represented with these three expressions.

* There are four other expressions but they are event
simpler, read-only interleavings.

 Unbounded. Interleavings between an unbounded
number of enqueuers and degueuers can be seen as

the unbounded alternation (’”next + Itgj| ’”head) .

next = (T € T : read + Teng : read)™ - (Teng : cas/succeed) - (7 € T : restart)”

Benefits

K

(”next T Itail T ”head)

 Concise. MSQ’s concurrent executions can be
represented with these three expressions.

* There are four other expressions but they are event

Read-Only Layer 1
(deq:2-7-return)”

Layer

(@dv:1-4-1)m Dequeue Succeed

Dequeue Succeed

Layer

Layer

Advancer Succeed

49>

Enqueue
Succeed Layer

Layer

Advancer Succeed

Read-Only Layer 2
(@dv:1-4-1)"

Enqueue
Succeed Layer

Layer

Dequeue Succeed

Advancer Succeed
Layer

:

Succeed Layer

Advancer

Read-Only Layer 3
(enq:2-7-2)"

(deq:2-7-2)m

Read-Only Layer 4
(enq:2-7-2)"

Dequeue
Succeed
Layer

Advancer
Succeed
Layer

N an unbounded
ars can be seen a*s

T I'tgj| T ’”head) -

as/succeed) - (7 € T : restart)”

Some Questions

 Why safe to only discuss seemingly limited scenarios?
 How can we describe such scenarios?

o Later: will it match the prose proofs? Automation?

4 STEVEN S INSTITUTE of TECHNOLOGY

1int increment () { 8 int decrement () |

2 while (true) { 9 while (true) {
- 3 int ¢ = ctr; 10 int ¢ = ctr;
A simpler example | Flcciioon u it (e o)
5 return c; 12 return 0;
Concurrent Counter e i \f CCASCetr.c.c=1))
7 } 14 return c;
15 }
16 }

4 STEVENS INSTITUTE of TECHNOLOGY

1int increment () { 8 int decrement () {

2 while (true) { 9
- 3 int ¢ = ctr; 10
A simpler example . [ocr e
Concurrent Counter o, e »
7} 14
15

16 }

A “nice” execution

c2=0 | cas fails c2=1 cas—ctr=2
ﬁ -- ﬁ ﬁ ﬁi
C3= ‘cas fails C3=1— *cas fails
ﬁ ---------------------------- ﬁ ﬁ ------------------------- ﬁ

4 STEVENS INSTITUTE of TECHNOLOGY

while (true) {
int ¢ = ctr;
if (¢ == 0)
return 0;
if (CAS(ctr,c,c-1))
return c;

c3=2 cas ->ctr=3
—_— e >

1int increment () { 8 int decrement () {

2 while (true) { 9 while (true) {
A - I I 3 int ¢ = Ctr; 10 int ¢ = Ctr;
Slmp er examp e 4 if (CAS(ctr,c,c+1)) 11 if (¢ == 0)
5 return c; 12 return 0;
Concurrent Counter e 1 3 if (CASCCEr.c.c=1))
7 } 14 return c;
15 }
16 }
A “nice” execution) .
c'=0 cas—ctr=1 . Representative Interleaving J
c2=0/\/ [F_—_»cas fails c2=1 _ cas—ctr=2
cas fails c3=1/ \‘cas fails c3=2 cas -> ctr=3
---------------------------- —_— —_— e | e)

Three canonical phases

4 STEVENS INSTITUTE of TECHNOLOGY

1int increment () { 8 int decrement () {

2 while (true) { 9 while (true) {
A - I I 3 int ¢ = ctr; 10 int ¢ = ctr;
Slmp er examp e 4 if (CAS(ctr,c,c+1)) 11 if (¢ == 0)
5 return c; 12 return 0;
Concurrent Counter e 1 3 if (CASCCEr.c.c=1))
7 } 14 return c;
15 }
16 }
A “nice” execution) .
c'=Q cas—ctr=1 Representative Interleaving
T], - /
i DA ;n‘i | \\ i
0= () e el ‘, ~—_, cas fails c2=1 cas—ctr=2
P W A 7 Piehriekir il < E——
c3=0 i “cas fails c3=1 et Mcas fails c3=2 cas -> ctr=3
---------------------------- —_— —_— e B | e)

Three canonical phases

(z€T:c*=0+c" =0)"- (¢ : cas(ctr,0,1)/true) - (r € T : cas(ctr,0,1)/false)”

4 STEVENS INSTITUTE of TECHNOLOGY

1int increment () { 8 int decrement () {

2 while (true) { 9 while (true) {
- 3 int ¢ = ctr; 10 int ¢ = ctr;
A simpler example | oo ey 1 it cc—o)
5 return c; 12 return 0;
Concurrent Counter e i \f C(CASCotr.c.c=13)
7 } 14 return c;
15)
16 }

Equivalent to other executions:
e.g. we reorder/swap some actions within a layer

ci=0 cas—ctr=1 \
< = - m—

[\\+ cas fails c2=1 cas—ctr=2

7
(o
i. -- ﬁ-ﬁ
4
(r)

cas fails c3—1/ \‘cas fails c3=2 cas -> ctr=3

4 STEVENS INSTITUTE of TECHNOLOGY

1int increment() { 8 int
2 while (true) { 9
A - I I 3 int ¢ = ctr; 10
Slmp er examp e 4 if (CAS(ctr,c,c+1)) 11
. 12
Concurrent Counter oo, e ”
7 } 14
15
16 }

Or to one where we rename threads:

ta: c1=0 cas—ctr=1 \

decrement () {
while (true) {
int ¢ = ctr;
if (¢ == 0)
return 0;
if (CAS(ctr,c,c-1))
return c;

e o ——

[\\' cas fails c2=1 cas—ctr=2

------------- —_— >

4 STEVENS INSTITUTE of TECHNOLOGY

cas fails c3-1—’///// \‘casfaﬂs
— —_—

c3=2 cas ->ctr=3

1int increment () { 8 int decrement () {

2 while (true) { 9 while (true) {
- 3 int ¢ = ctr; 10 int ¢ = ctr;
A simpler example | oo ey 1 it cc—o)
5 return c; 12 return 0;
Concurrent Counter e i \f C(CASCotr.c.c=13)
7 } 14 return c;
15 }
16 }

Yet another execution:

\

cil=0 cas—ctr=1
—_—

\» cas fails c2=1 cas — ctr=2
 —

... with a “late” cas fall.

4 STEVENS INSTITUTE of TECHNOLOGY

Notion of| Representative Interleaving |.

(Note: each representative interleaving could be
equivalent to infinitely many others)

Find a core set—a “quotient” —of such representatives,
much easier to work with, e.g., linearizability.

Object Quotient, Semantically

Object Quotient, Semantically

Definition: The commutativity quotient of a concurrent object
s a (sub)set of the object’s traces (| O|) C [O]] such that:

Object Quotient, Semantically

Definition: The commutativity quotient of a concurrent object
s a (sub)set of the object’s traces (| O|) C [O]] such that:

e Completeness:
Vr e [O].37,7". relabel(r,7) AT =y t" AT € (| O))

Object Quotient, Semantically

Definition: The commutativity quotient of a concurrent object
s a (sub)set of the object’s traces (| O|) C [O]] such that:

e Completeness:
Vr e [O].37,7". relabel(r,7) AT =y t" AT € (| O))

. Optimality
Vi,7' € (|O]) . ~(z = 7)

OOPSLA 2024

(|
I o p I CS Scenario-Based Proofs for Concurrent Objects

CONSTANTIN ENEA, LIX - CNRS - Ecole Polytechnique, France
ERIC KOSKINEN, Stevens Institute of Technology, USA

Concurrent objects form the foundation of many applications that exploit multicore architectures and their
importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments
(as found in the distributed computing literature) give intuitive descriptions of a few canonical executions
or “scenarios” often each with only a few threads, yet it remains unknown as to whether these intuitive
arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads.
- We present a novel proof technique for concurrent objects, based around identifying a small set of scenarios
® Q u Ot I e n ts fo r m a I Iy. (representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object.
J We next give an expression language for defining abstractions of the quotient in the form of regular or
context-free languages that enable simple proofs of linearizability. These quotient expressions organize
unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between
implementation-level contention/interference and ADT-level transitions.

@ Exp reSSi n g q u Ot i e nts . We evaluate our work on numerous non-trivial concurrent objects from the literature (including the

Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that
quotients capture the diverse features/complexities of these algorithms, can be used even when linearization
points are not straight-forward, correspond to original authors’ correctness arguments, and provide some new
scenario-based arguments. Finally, we show that discovery of some object’s quotients reduces to two-thread

® Au to m at a reasoning and give an implementation that can derive candidate quotients expressions from source code.
H

CCS Concepts: « Software and its engineering — Formal software verification; - Theory of computation
— Logic and verification; Program reasoning; - Computing methodologies — Concurrent algorithms.

Additional Key Words and Phrases: verification, linearizability, commutativity quotient, concurrent objects

* Verifying concurrent objects.

Constantin Enea and Eric Koskinen. 2024. Scenario-Based Proofs for Concurrent Objects. Proc. ACM Program.
Lang. 8, OOPSLA1, Article 140 (April 2024), 30 pages. https://doi.org/10.1145/3649857

1 INTRODUCTION

® So m e a Uto m ati O n . Efficient multithreaded programs typically rely on optimized implementations of common abstract

data types (ADTs) like stacks, queues, and sets, whose operations execute in parallel to maximize
efficiency. Synchronization between operations must be minimized to increase throughput [Herlihy
and Shavit 2008]. Yet this minimal amount of synchronization must also be adequate to ensure that
operations behave as if they were executed atomically, so that client programs can rely on their
(sequential) ADT specification; this de-facto correctness criterion is known as linearizability [Herlihy
and Wing 1990]. These opposing requirements, along with the general challenge in reasoning about
interleavings, make concurrent data structures a ripe source of insidious programming errors.
Algorithm designers (e.g., researchers defining new concurrent objects) argue about correctness

* STEVENS INSTITUTE of TECHNOLOGY by considering some number of “scenarios”, i.e., interesting ways of interleaving steps of different

Authors’ addresses: Constantin Enea, LIX - CNRS - Ecole Polytechnique, Paris, France, cenea@lix.polytechnique.fr; Eric

Expressing Quotients

expr = w | w7 - expr-w, | expr | expr+expr | expr - expr

EEEEE S INSTITUTE of TECHNOLOGY

Expressing Quotients

expr = @

Seqguence of labels performed by one thread

[x:=v - x++]

4 STEVENS INSTITUTE of TECHNOLOGY

Expressing Quotients

expr = @

Seqguence of labels performed by one thread

{(t:x:=v), (t:x++)} € [[x:=v - x++]

4 STEVENS INSTITUTE of TECHNOLOGY

Expressing Quotients

expr = @ | wy,- expr - o

((c:=ctT)ine)"
(c:=ctr) - {(|[c=ctr|- ctr:=c+1)) - ret(c) -

([C=Ctr]mc) :

for every application of this production,
n is a fresh variable not occurring in expr

4 STEVENS INSTITUTE of TECHNOLOGY

Expressing Quotients

expr = @ | wy,- expr - o

((c:=ctT)ine)"
(c:=ctr) - {(|[c=ctr|- ctr:=c+1)) - ret(c) -

([C=Ctr]mc) :

for every application of this production,
n is a fresh variable not occurring in expr

Z

4 STEVENS INSTITUTE of TECHNOLOGY

Expressing Quotients

expr = @ | wy,- expr - o

L. . " ((Cz:Ctr)inc)n‘
for every application of this production,

n is a fresh variable not occurring in expr (c:=ctr) - {([c=ctr| - ctr:=c+1)) - ret(c) -

([C=Ctr]mc) :
c

tr:(c:=ctr)-t3:(c:=ctr)-(t;:(c:=ctr)-t;:{{c =ctr] - ctr :=c+1)-t;:ret(0))}
t3:[c =ctr|-ty:|[c = ctr]-

t3:(c:=ctr) - ty:(c:=ctr) - t2:{|c =ctr] -ctr:=c+ 1) - ty:ret(1) - t3:|c = ctr]-

t3:(c:=ctr) - t3:{|c=ctr]| -ctr :=c+ 1) - t3:ret(2)

Expressing Quotients

expr = w | w7 - expr-w, | expr | expr+expr | expr - expr

... and other usual KAT constructors

4 STEVENS INSTITUTE of TECHNOLOGY

Expressing Quotients with Automata

e More refined

e Paths are sometimes infeasible

expr = w | wy - expr-w, | expr’ | expr+expr | expr - expr

Expressing Quotients with Automata

e More refined

e Paths are sometimes infeasible

Layer2 ((c:=ctr)inc)" - tayer3 ((c:=ctx)inc)" - ((c:=ctr)gec)" -
Read-Only Layer 1 (c:=ctr) - {[c=ctr]- ctr:=c+1)) - ret(c) - (c:=ctr) - {([c=ctr] - ctr:=c+1)) - ret(c) -
(Cc:=ctr) - [c=0] - ret(0))” /\ ([C=Ctr]mc)n ([c=ctr]dec)m ' ([C=Ctr]z'nc)n
[ctr=0 ctr>0 j

/ \j ((c:=ctr)inc)” - ((c:=ctT)gec) -

(See definition of Layer 4 to the right)

(c:=ctr) - ([c=ctr| - ctr:=c-1)) - ret(c)
Layer 4

(Tometrlye,) - (lemetliy)”

Layer 4

4 STEVENS INSTITUTE of TECHNOLOGY

expr = w | wy - expr-w, | expr’ | expr+expr | expr - expr

Expressing Quotients with Automata

e More refined

e Paths are sometimes infeasible

Layer 2 ((c:=ctx)ine)" - Layer 3 ((c:=ctr)ine)” - ((c:=CtT)gec)"
Read-Only Layer 1 (c:=ctr) - {{[c=ctr] - ctr:=c+1)) - ret(c) - (c:=ctr) - {([c=ctr] - ctr:=c+1)) - ret(c) -
(ermctr) - [e=0] - ret(0))° (Fctline)” (metrluee) ([e=ctline)

|
C I [
|
\.“

(c:=ctT)inc) - ((c:=ctT)gec) -

A
(See definition of Layer 4 to the right) (c: =Ctr) ([c=ctr] - ctr:=c-1)) - ret(c) -

Layer 4 m n
Layer 4 ([C—Ctr] dec) ([C—Ctr] inc)

4 STEVENS INSTITUTE of TECHNOLOGY

expr = w | o} - expr- w; | expr® | expr+expr | expr - expr

Expressing Quotients with Automata

e More refined

e Paths are sometimes infeasible

Layer 2 ((c:=ctT)ine) " L8veLs ((c:=ctr)ine)” « ((c:=ctr)gec)” -
Read-Only Layer 1 (c:=ctr) - {{[c=ctr] - ctr:=c+1)) - ret(c) - (c:=ctr) - {([c=ctr] - ctr:=c+1)) - ret(c) -
((er=ctx) - [o=0] - ret(0)) (le=ctel,n.)" (cttluee) - (=cttline)

[\

/

c:=ctT)inc) - ((c:=ctT)gec)

A
(See definition of Layer 4 to the right) (c: =Ctr) ([c=ctr] - ctr:=c-1)) - ret(c) -

Layer 4 m n
Layer4 ([C—Ctr] dec) ([C-Ctr] inc)

4 STEVENS INSTITUTE of TECHNOLOGY

expr = w | o} - expr- w; | expr® | expr+expr | expr - expr

Evaluation

Michael/Scott [1996] Queue

SLS Queue [2006]

Harris et al RDCSS [2002]

Hendler et al Elim. Stack [2004]

Herlihy/Wing [1990] Queue

4 STEVENS INSTITUTE of TECHNOLOGY

Evaluation

Michael/Scott [1996] Queue

4 STEVENS INSTITUTE of TECHNOLOGY

Evaluation

Michael/Scott [1996] Queue

Read-Only Layer 1
(deq:2-7-return)”

Dequeue Succeed ||Read-Only Layer 2 Legend: Layer Definitions

(@dv:1-4-1)m Dequeue Succeed
A Layer

Layer

(@dv:1-4-1)"

Dequeue Succeed Layer
(deq:2-10)" (deq:2-5)™
deq:2-10-cas(Q.head)/true
(deq:5-2)™ (deq:10-2)"

q1

Advancer Succeed
Layer

Enqueue Advancer Succeed Enqueue Advancer.Succeed Layer
Succeed Layer Layer Succeed Layer Advancer (enq:2-6)" adv:2-5)™
Succeed Layer adv:2-5-cas(Q->tail)/true

;-

Dequeue Succeed
Layer

43 (adv:5-2)™ (enq:6-2)"

Advancer Succeed Enqueue Succeed Layer

Layer A (enq:2-8)"
Read-Only Layer 3 . Dequeue Advancer D._8- tail-
(enq:2-7- 2) Re?gncc)]r:ﬂzy_l%?_}éc;’rﬁ Succeed Succeed enq:2-8 cas.(g_;an“ 2nat
(deq:2-7-2)™ Layer Layer (enq:8-2)

Evaluation

Michael/Scott [1996] Queue

Proof Element

Herlihy and Shavit [2008]

Quotient Proof

ADT states

“queue is nonempty, “tail is lagged”

ADT states, e.g. (Q.tail=Q. head
A Q.tail->next # null)

Concurrent threads

“some other thread”

Superscripting (...)"

Event order

“only then”

Arcs in the quo automaton

Thread-local step seq.

“reads tail, and finds the node that appears
to be last (Lines 12-13)”

Layer paths, e.g., enq:2-6

Linearization pts.

“If this method returns a value, then its lin-
earization point occurs when it completes

a successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33

The successful CAS in the De-
queue Succeed Layer or Read-Only
Layer 1

4 STEVENS INSTITUTE of TECHNOLOGY

Evaluation

SLS Queue [2006]

 Synchronous: threads block on dequeue

* Reservations: When queue has no elements (but waiting
threads) it becomes a queue of reservations.

 Implementation has multiple writes for a single invocation.

* Linearizability: LPs must account for dequeuers arriving before
their corresponding enqueuer.

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

SLS Queue [2006]

When the queue is a list of reservations
(deq appends resv at tail, enq removes resv at head)

Dapp

4 STEVENS INSTITUTE of TECHNOLOGY

When the queue is a list of items
(eng appends items at tail, deq removes items at head)

Eapp

Tail advance (TA)
with (3 fail paths)x

with (3 fail paths)x

Enq append item node (Eapp)

!m!with (1 fail path)x

(HR)
with (9 fail paths)sx

with (9 fail paths)*

with (9 fail paths)x

Head rea

Deq append reservation (Dapp)

!m!with (1 fail path)x*
Enqg swap res for item (Eswap)
!lw)! with (2 fail paths)x

Deq swap item for null (Dswap)
!lw,! with (2 fail paths)x

Evaluation

Herlihy/Wing [1990] Queue

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

* deqg repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

Herlihy/Wing [1990] Queue

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

* deqg repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

Herlihy/Wing [1990] Queue

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

e deq repeatedly scans the a
slot in a doubly-nested loop.

r the first non-empty

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

Herlihy/Wing [1990] Queue

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

e deq repeatedly scans the a
slot in a doubly-nested loop.

empty

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

Herlihy/Wing [1990] Queue

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

e deq repeatedly scans the a
slot in a doubly-nested loop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

Herlihy/Wing [1990] Queue

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

» deq repeate
slot in a doubly-nested [oop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

EEEEE S INSTITUTE of TECHNOLOGY

Evaluation

Harris et al RDCSS [2002]

o Multiple CAS steps
O Phases

Hendler et al Elim. Stack [2004]

O Elimination
o Submodule: Treiber’s stack

o LP of one happens in
another (helping)

4 STEVENS INSTITUTE of TECHNOLOGY

Generating Quotient Automata

Generating Quotient Automata

« MSQ and Treiber Stack have a certain structure
 Enumerate the “local paths” and the “write paths”

« Compute automaton ADT states: boolean combinations of
weakest preconditions)

 Compute automaton edges: whenever g implies precondition

of a write path, compute every g’ and each local path that is

possible due to the write path. Create layer edge ¢ i q'.

4 STEVENS INSTITUTE o0 f TECHNOLOGY

Generating Quotient Automata

* Implemented in CIL, using Ultimate Automizer

 Automatically generated automata for a few examples:

States # Paths | # Trans. # Layers Time # Solver
Example Q| #k #k, |6] | A(O) | (s) OQueries
evenodd.c 2 2 2 6 3 52.2 32
counter.c 2 3 2 6 5 67.8 36
descriptor.c 4 6 2 6 6 160.2 74
treiber.c 2 3 2 6 5 71.4 37
msq. C 4 9 3 17 7 441.6 314
listset.c 7 6 2 59 7 603.8 494

4 STEVENS INSTITUTE of TECHNOLOGY

Conclusion

 Working with representative interleavings (the quotient) is
easier than working with all interleavings.

* Quotient can be expressed by simple context-free
expressions

* Applies to a variety of objects (MSQ, SLS, HWQ), Treiber, Elim)

 Can be automated for some; open questions...

Open Questions

 How to automate other concurrent objects?
* How to mechanize checking completeness of a quotient

* How to generate quotient expressions more generally

EEEEE S INSTITUTE of TECHNOLOGY

‘_‘_I_I_Il_l—l_l_ll_l_l.

-\-“-\-l-=-I-|-l-ll-l-l-|_ll-l-l
PEEspyE=—p—p——

W

Thank you! ARAAE

1870

OOPSLA 2024

Scenario-Based Proofs for Concurrent Objects

CONSTANTIN ENEA, LIX - CNRS - Ecole Polytechnique, France
ERIC KOSKINEN, Stevens Institute of Technology, USA

Concurrent objects form the foundation of many applications that exploit multicore architectures and their
importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments
(as found in the distributed computing literature) give intuitive descriptions of a few canonical executions
or “scenarios” often each with only a few threads, yet it remains unknown as to whether these intuitive
arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads.

We present a novel proof technique for concurrent objects, based around identifying a small set of scenarios
(representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object.
We next give an expression language for defining abstractions of the quotient in the form of regular or
context-free languages that enable simple proofs of linearizability. These quotient expressions organize
unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between
implementation-level contention/interference and ADT-level transitions.

We evaluate our work on numerous non-trivial concurrent objects from the literature (including the
Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that

o quotients capture the diverse features/complexities of these algorithms, can be used even when linearization

points are not straight-forward, correspond to original authors’ correctness arguments, and provide some new
scenario-based arguments. Finally, we show that discovery of some object’s quotients reduces to two-thread
reasoning and give an implementation that can derive candidate quotients expressions from source code.

CCS Concepts: « Software and its engineering — Formal software verification; - Theory of computation
— Logic and verification; Program reasoning; - Computing methodologies — Concurrent algorithms.

Additional Key Words and Phrases: verification, linearizability, commutativity quotient, concurrent objects

ACM Reference Format:
Constantin Enea and Eric Koskinen. 2024. Scenario-Based Proofs for Concurrent Objects. Proc. ACM Program.

Extra Slides

4 STEVENS INSTITUTE of TECHNOLOGY

The ABA problem

ci=0 cas—ctr=1
—

\

i,
C2= X» cas fails c2=1 cas — ctr=2
—

Fig. 8. An increment-only execution for which there is an equivalent representative execution (as suggested
by the large wavy arrow) that is in the layer quotient.

cl= cas—ctr=1
2i=0_osssotrat \

c2=0 /\/ \‘ cas fails — decrement
“

c3=0 cas -> ctr=1

ﬁ .. ﬁ

Fig. 9. An execution where the second thread executes a decrement, which is equivalent to the representative
execution suggested by the wavy arrow.

4 STEVENS INSTITUTE of TECHNOLOGY

