
Eric Koskinen • FRIDA 2024 • July 23, 2024

Scenario-Based Proofs
for Concurrent Objects

Joint work with Constantin Enea (É.P.)

Concurrent Objects

Concurrent Objects

Concurrent Objects

Concurrent Objects

Concurrent Objects

So we need more rigorous guarantees.

Michael-Scott Queue

Michael-Scott Queue

Michael-Scott Queue

Michael-Scott Queue

Michael-Scott Queue

• Owicki/Gries

• Rely/Gaurantee

• Concurrent Separation Logic

• RGSep

• Deny-Guarantee

• Views

• Iris

• Many others …

Proving Linearizability

What did Michael/Scott say?

What did Michael/Scott say?
They describe “scenarios”

Scenario A Scenario B Scenario C

What did Michael/Scott say?
They describe “scenarios”

* Actually this prose from Herlihy/Shavit TAOMPP.

Scenario A Scenario B Scenario C

What did Michael/Scott say?
They describe “scenarios”

What did Michael/Scott say?
They describe “scenarios”

What did Michael/Scott say?
They describe “scenarios”

Important ADT states

What did Michael/Scott say?
They describe “scenarios”

Important ADT states
Concurrent threads

What did Michael/Scott say?
They describe “scenarios”

Important ADT states
Concurrent threads
Event Order

What did Michael/Scott say?
They describe “scenarios”

Important ADT states
Concurrent threads
Event Order
Thread-local step sequence

What did Michael/Scott say?
They describe “scenarios”

Important ADT states
Concurrent threads
Event Order
Thread-local step sequence

Linearization points

Why can’t proofs be more
“scenario” orientated?

?

1. Unboundedly many threads are reading the data structure.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

6. The other (unboundedly many) threads fail their CASes on tail’s next and restart.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

6. The other (unboundedly many) threads fail their CASes on tail’s next and restart.

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

6. The other (unboundedly many) threads fail their CASes on tail’s next and restart.

And two others:

rtail ≡ . . .
rhead ≡ . . .

• Concise. MSQ’s concurrent executions can be
represented with these three expressions.

• There are four other expressions but they are event
simpler, read-only interleavings.

• Unbounded. Interleavings between an unbounded
number of enqueuers and dequeuers can be seen as
the unbounded alternation .(rnext + rtail + rhead)*

(rnext + rtail + rhead)
*

Benefits

• Concise. MSQ’s concurrent executions can be
represented with these three expressions.

• There are four other expressions but they are event
simpler, read-only interleavings.

• Unbounded. Interleavings between an unbounded
number of enqueuers and dequeuers can be seen as
the unbounded alternation .(rnext + rtail + rhead)*

(rnext + rtail + rhead)
*

Benefits

Some Questions

• Why safe to only discuss seemingly limited scenarios?

• How can we describe such scenarios?

• Later: will it match the prose proofs? Automation?

A simpler example
Concurrent Counter

A simpler example
Concurrent Counter

A “nice” execution

A simpler example
Concurrent Counter

A “nice” execution

Three canonical phases

Representative Interleaving

A simpler example
Concurrent Counter

A “nice” execution

Three canonical phases

(τ ∈ T : cτ = 0 + cτ′ = 0)n ⋅ (τ′ : cas(ctr,0,1)/true) ⋅ (τ ∈ T : cas(ctr,0,1)/false)n

Representative Interleaving

A simpler example
Concurrent Counter

Equivalent to other executions:
e.g. we reorder/swap some actions within a layer

A simpler example
Concurrent Counter

Or to one where we rename threads:

t5:

t6:

t4:

A simpler example
Concurrent Counter

Yet another execution:

… with a “late” cas fail.

Notion of representative interleaving.

(Note: each representative interleaving could be
equivalent to infinitely many others)

Find a core set—a “quotient”—of such representatives,
much easier to work with, e.g., linearizability.

Idea

Representative Interleaving

Object Quotient, Semantically

Object Quotient, Semantically

Definition: The commutativity quotient of a concurrent object
is a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]

Object Quotient, Semantically

Definition: The commutativity quotient of a concurrent object
is a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

Object Quotient, Semantically

Definition: The commutativity quotient of a concurrent object
is a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

• Optimality: 
∀τ, τ′ ∈ ⟨⌊O⌋⟩ . ¬(τ ≡⋈ τ′)

• Quotients, formally.

• Expressing quotients.

• Automata.

• Verifying concurrent objects.

• Some automation.

Topics
OOPSLA 2024

Expressing Quotients

Expressing Quotients

Sequence of labels performed by one thread

Expressing Quotients

Sequence of labels performed by one thread

Expressing Quotients

for every application of this production,

𝑛 is a fresh variable not occurring in expr

Expressing Quotients

for every application of this production,

𝑛 is a fresh variable not occurring in expr

∈

Expressing Quotients

for every application of this production,

𝑛 is a fresh variable not occurring in expr

∈

Expressing Quotients

… and other usual KAT constructors

• More refined

• Paths are sometimes infeasible

Expressing Quotients with Automata

• More refined

• Paths are sometimes infeasible

Expressing Quotients with Automata

• More refined

• Paths are sometimes infeasible

Expressing Quotients with Automata

Control states are
(abstractions of)

ADT states

• More refined

• Paths are sometimes infeasible

Expressing Quotients with Automata

Arcs are labeled
with expressions

Control states are
(abstractions of)

ADT states

Evaluation

Herlihy/Wing [1990] Queue

Michael/Scott [1996] Queue

Hendler et al Elim. Stack [2004]

Harris et al RDCSS [2002]

SLS Queue [2006]

Evaluation
Michael/Scott [1996] Queue

Q.tail=Q.head
/\ Q.tail->next=null

Q.tail=Q.head
/\ Q.tail->next≠null Q.tail≠Q.head

/\ Q.tail->next≠null

Q.tail≠Q.head
/\ Q.tail->next=null

q1 q2

q3 q4

Evaluation
Michael/Scott [1996] Queue

Evaluation
Michael/Scott [1996] Queue

Evaluation
SLS Queue [2006]

• Synchronous: threads block on dequeue

• Reservations: When queue has no elements (but waiting
threads) it becomes a queue of reservations.

• Implementation has multiple writes for a single invocation.

• Linearizability: LPs must account for dequeuers arriving before
their corresponding enqueuer.

Evaluation
SLS Queue [2006]

Evaluation
Herlihy/Wing [1990] Queue

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

Evaluation
Herlihy/Wing [1990] Queue

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

Evaluation
Herlihy/Wing [1990] Queue

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

Some enqueuers
increments back

Evaluation
Herlihy/Wing [1990] Queue

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Evaluation
Herlihy/Wing [1990] Queue

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

dequeue scans
that succeed

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Evaluation
Herlihy/Wing [1990] Queue

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

dequeue scans that
need to restart

dequeue scans
that succeed

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Evaluation

Herlihy/Wing [1990] Queue

Future-dependent LPs

Michael/Scott [1996] Queue

Many cas operations

LP helping

Hendler et al Elim. Stack [2004]

Elimination

Submodule: Treiber’s stack

LP of one happens in
another (helping)

Harris et al RDCSS [2002]

Multiple CAS steps

Phases

SLS Queue [2006]

Synchronous

Multiple writes

LP helping

Generating Quotient Automata

Generating Quotient Automata

• MSQ and Treiber Stack have a certain structure

• Enumerate the “local paths” and the “write paths”

• Compute automaton ADT states: boolean combinations of
weakest preconditions)

• Compute automaton edges: whenever implies precondition
of a write path, compute every and each local path that is
possible due to the write path. Create layer edge .

q
q′

q λ q′

Generating Quotient Automata
• Implemented in CIL, using Ultimate Automizer

• Automatically generated automata for a few examples:

Conclusion

• Working with representative interleavings (the quotient) is
easier than working with all interleavings.

• Quotient can be expressed by simple context-free
expressions

• Applies to a variety of objects (MSQ, SLS, HWQ, Treiber, Elim)

• Can be automated for some; open questions…

Open Questions

• How to automate other concurrent objects?

• How to mechanize checking completeness of a quotient

• How to generate quotient expressions more generally

Thank you!

OOPSLA 2024

Extra Slides

The ABA problem

