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Motivation: Fast Data Structures



- Fast Data Structures  Fast Algorithms

- Fast Concurrent Data Structures  Fast Parallel Algorithms

Motivation: Fast Concurrent Data Structures



Goal

Design and Deploy Fast and 
Scalable Multicore (i.e., 

Concurrent) Data Structures



Google open source graph-mining library

https://github.com/google/graph-mining



Asynchrony makes concurrent algorithm design notoriously hard
• 𝑝𝑡 possible executions of length 𝑡

• Uncountably many infinite executions

• ALL possible executions must produce desired behavior

Subtle Race Conditions: some “hard to detect” executions goes wrong

Challenge



Challenge

Mars Pathfinder Rover Northeast Blackout of 2003 Therac-25

Multi-million dollar 
space project 
jeopardized

~45 Million people in the 
US affected by power 

cuts which lasted 8 hours

Patients given Radiation 
doses >100x desired 

amount; 3 deaths

Asynchrony makes concurrent algorithms hard to design and prove correct

Subtle race conditions have plagued even mission-critical concurrent code



Goal

Machine-verified proofs of 
correctness (i.e., linearizability) 

for concurrent data objects 



Each operation must appear to take effect atomically, i.e.,

instantaneously at some point between its invocation and completion

Correctness = Linearizability 
[Herlihy & Wing, 1990]
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Forward Simulation: A Simple Proof Technique 
[Jonsson, 1991]
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• Maintain an atomic reference object  

• Induct over arbitrary run

• Identify Linearization Points as they occur

• Show that return values of implemented object match those of the atomic object 
if operations taking place at linearization points 
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But what if…
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• Is this linearizable?

• Actually, it is linearizable: just with different linearization points

• Lessons: 
• We can’t always determine linearization points as they occur

• Our choice of linearization points of past operations may depend on future outcomes



Future-Dependence

Some implementations are inherently future-dependent

(e.g., the Herlihy-Wing queue)

So, standard forward simulation is simple but not complete 

(forward simulation can’t be used to prove all data structures)

Is there a simple proof technique for linearizability, that is 
complete and can be used to obtain machine-verified proofs?



Previous Work

• Linearizability Introduced Herlihy and Wing 1990

• Forward Simulation Jonsson 1991

• Prophecy Variables Vafeiadis 2008

• Aspect-Oriented Proofs Henzinger et al. 2013

• Backward Simulation Schellhorn et al. 2014

• Commitment Points Bouajjani et al. 2017

• Partial-Order Maintenance Khyzha et al. 2017

• Prophecy Variables in Separation Logic Jung et al. 2019

• Category Theory Based Olivera-Vale et al. 2023

Color key: Incomplete, Not Universal, Unmechanized, Not Simple



Our Contributions: Proof Technique 

Meta-Configurations Tracking proof technique for Linearizability

• Universal: Objects of any type can be handled

• Complete: Any algorithm that is linearizable can be proved so

First such forward reasoning technique 

Proofs can be Machine-Certified



Our Contributions: Strong Linearizability

We also introduce a related proof technique, called Singleton 
Tracking, which is a universal, sound, and complete forward-
reasoning technique to prove Strong Linearizability (a close-cousin 
of linearizability).



Our Contributions: Machine-verified Proofs 

• Herlihy-Wing Queue
• Intricate future-dependent linearization structure

• Jayanti Snapshot (single-writer, single-scanner)
• Efficient algorithm with future-dependent linearization

• Jayanti-Tarjan Union-Find Objects
• Widely-used across domains & in Google’s graph-mining library

Computation Citation #cores Benchmark speed-up

Spatial Clustering [Wang et al] 36 Sequential 5 – 33×

Structural Clustering [Tseng et al] 48 Sequential 5 – 32×

Model Checking [Bloemen] 64 Sequential 14.16 – 24.35 ×

Connected Components [Dhulipala et al] 72 Multicore 1.5 – 4.02×



Our Idea

• Given original algorithm A:

– Design Augmentation A∗ that tracks the set 𝑀 of all possible atomic 
reference objects, corresponding to all possible linearizations

THEOREM
A is linearizable iff 𝑀 ≠ ∅ is invariant of A∗
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How we track all meta-configurations

Initially 𝑀 ∶= {m0}, where m0 has the initial state and all processes are idle

Three Update Rules:

1. When π invokes op(arg)

For each m ∊ 𝑀: update m.π from (–, –, –) to (op, arg, –) 

2. When π returns r for op(arg)

Filter out each m ∊ 𝑀 if m.π’s third field is not r

otherwise, update m.π to (–, –, –) since π is now idle

3. When π executes a step

Evolve each m ∊ 𝑀 to reflect that any set of pending operations can 
linearize in any order. 



Meta-Configurations Tracking

Initialize

𝑀 ∶= {m0}, where m0.state is initial state, ∀π ∈ Π, m0.π = (–, –, –)

Update Rules:

• When π invokes op(arg)

𝑀 ∶= {m′ | ∃m∊ 𝑀:m′.π = (op, arg, –) and otherwise m′ = m}

• When π executes a step

𝑀 ∶= {m′ | ∃m ∊ 𝑀, ∃S ⊆ pending(m), ∃𝛼 ∊ perm(S): m′ = 𝛼(m)}

• When π returns r for op(arg)

𝑀 ∶= {m′ | ∃m∊ M: m.π.res = r, m′.π = (–, –, –), and o/w m′ = m}



Meta-Configurations Tracking: Main Theorem

• For an algorithm A, let A∗ be the same algorithm augmented 
with a variable 𝑀 that tracks all meta-configurations.

THEOREM
A is linearizable iff 𝑀 ≠ ∅ is invariant of A∗



Herlihy-Wing Queue

5 ⊥ 15 ⊥ ⊥A

X = 3

…
0 1 2 3 4

Initially A[0,1,2,…] = [⊥, ⊥, ⊥,…] and X = 0

Enqueue(v):

// take next empty slot & place v into it.

s := X.F&Inc()

A[s] := v

Dequeue():

// read X; scan A[0,…,X-1] and 

return first found element; try 

again, if no element is found.

while (true)

len := X

for (s := 0; s < len; s++)

r := A[s].swap(⊥)

if r != ⊥ then return r



Herlihy-Wing Queue: Proof

Want to prove: 𝑀 ≠ {} is an invariant of A*

• Main Intellectual Work: Identify structure of 𝑀.

• Strengthen to Inductive Invariant

• Proof by Induction: over the length of A*

• Encode the proof in TLAPS and let the machine verify!



Herlihy-Wing Queue: Proof



Herlihy-Wing Queue
Machine Verification in TLAPS



Conclusion
• Machine-verification of concurrent data structures can help avoid errors in mission 

critical deployments.

• We introduced Meta-Configurations Tracking: the first universal, sound, and 
complete, forward-reasoning proof technique for linearizability
– Easy to express proofs of even complex future-dependent algorithms (e.g., Herlihy-Wing 

queue, Jayanti’s Snapshot)
– We have verified widely used concurrent objects (e.g., Jayanti-Tarjan Union-Find objects)
– Proved using TLA+ Proof System

• Ongoing work: We are expanding the technique to variants of Linearizability

• We would love to see these techniques used to machine-certify more important and 
interesting concurrent algorithms

• We’d love to see support for Meta-Configurations Tracking in verification tools



github.com/google/graph-mining [POPL 24] Jayanti, Jayanti, Yavuz, Hernandez
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Meta-Configuration Notation

State: (9, 5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

State

Current 
Operation

Argument Response


