Machine-Verifying Concurrent Data
Structures

Siddhartha Jayanti
Google Research
Dartmouth

Collaborators and Co-authors

POPL 2024] with Prasad Jayanti, Ugur Yavuz, Lizzie Hernandez
DIST 2021 , PODC 2019, PODC 2016] with Robert Tarjan
Google Research] with several iIncluding Laxman Dhulipala, Guy Blelloch

Motivation:

E Data Structure }

Priority Queue

9‘: :g

Union Find

Fast Data Structures

[Algorithm }

Connected Components

E Problem }

Navigation

Clustering

Motivation: Fast Concurrent Data Structures

- Fast Data Structures = Fast Algorithms

- Fast Concurrent Data Structures = Fast Parallel Algorithms

48 Years of Microprocessor Trend Data

‘..: » AA
. . “ .
&A Aah A

A ‘ttA o

Aaaa Performance
A A oeme *0 % 4
‘uﬁ“d ..’} .ﬂh (SpecINT x 107)
»~ . r
- 3 1

Single-Thread

“ = ~ ‘ "“"‘ ‘-..~ F.'l_‘(]k,‘l_:r",,:;-,; ;:fv”{”
AL ML ﬂ ﬁ’ w e =]
03
’ *. 24 P Fw Typical Power (Watts)
- = v v '
- v ST ITIRINF ""} % e Number of
. ® : "V - o o & Py ‘ . '
= - v ¥ v I b e* ..'i Logical Cores
2 * * N .Q
A o 1 o = s
" = - v v v® vwv P
‘ L4 R B e e W cnm wenenn oo

Goal

-

_

Design and Deploy Fast and
Scalable Multicore (i.e.,
Concurrent) Data Structures

Google open source graph-mining library

& google / graph-mining Public

<> Code (© Issues 9 Pullrequests () Actions [Projects () Security [~ Insights

¥ main ~ ¥ 1branch © 0tags Go to file

Laxman Dhulipala Fix graph_mining namespaces 3fbcboa last week O 11 commits
B docs Boilerplate for new Google open source project 2 years ago
B examples Fix graph_mining namespaces last week
M in_memory Fix graph_mining namespaces last week
BB utils Remove double-license and update README.md last week
3 .bazelrc VO of graph-mining repo last week
D .gitignore Update gitignore and add example from cjcarey and gzuzic's CLs. last week
[BUILD.oss VO of graph-mining repo last week
D CONTRIBUTING.md VO of graph-mining repo last week
[LICENSE Boilerplate for new Google open source project 2 years ago
[README.md Fix graph_mining namespaces last week
D WORKSPACE.bazel VO of graph-mining repo last week
‘= README.md

The Graph Mining Library »

This project includes some tools by the Google Graph Mining team, namely in-memory clustering. Our tools can be
used for solving data mining and machine learning problems that either inherently have a graph structure or can be
formalized as graph problems. For more information, see our NeurlPS'20 workshop.

Among others, this repository contains shared memory parallel clustering algorithms which scale to graphs with
tens of billions of edges and are based on the following research papers:

[Notifications % Fork 15 ¥ Star 514 -

About

No description, website, or topics
provided.

Readme

Apache-2.0 license

Code of conduct

Security policy

Activity

514 stars

14 watching

NONE IR A - SKCI - IK=

15 forks

Report repository

Releases

No releases published

Packages

No packages published

Languages

® C++931% Starlark 6.7%
® C02%

https://github.com/google/graph-mining

Challenge

Asynchrony makes concurrent algorithm design notoriously hard
* pt possible executions of length t
* Uncountably many infinite executions
* ALL possible executions must produce desired behavior

Subtle Race Conditions: some “hard to detect” executions goes wrong

Challenge

Asynchrony makes concurrent algorithms hard to design and prove correct

Subtle race conditions have plagued even mission-critical concurrent code

|u'n| 21
~4 1
L]

ele?

LSAT GeoStaz 1 S T % * iR

Mas Pathflnr Rovef rthast akut o 2003

] Therac-
Multi-million dollar ~45 Million people in the Patients given Radiation
space project US affected by power doses >100x desired

jeopardized cuts which lasted 8 hours amount; 3 deaths

Goal

4 N

Machine-verified proofs of
correctness (i.e., linearizability)
for concurrent data objects

_ /

Correctness = Linearizability
[Herlihy & Wing, 1990]

— ‘enq(l) ‘deq() return 1

O ¢

@
— enq(2) enq(3)
O 0

) Qeq() retur‘n 2

@

Time

Each operation must appear to take effect atomically, i.e.,

instantaneously at some point between its invocation and completion

Forward Simulation: A Simple Proof Technique
[Jonsson, 1991]

enq(1) deq() return 1
T, e @ o O o
end(2) enq(3)
T, —— —9 >
2
. Qeq() ° retur‘n
>
Time

* Maintain an atomic reference object
* Induct over arbitrary run
* |dentify Linearization Points as they occur

* Show that return values of implemented object match those of the atomic object
if operations taking place at linearization points

But what if...

~—— enq(1)
L

deq() return 3
L . 4

— enq(2) enq(3)
T, 0O - e .

) Qeq() ° rretur‘n2

Time

* |s this linearizable?

* Actually, it is linearizable: just with different linearization points

* Lessons:
* We can’t always determine linearization points as they occur

* Our choice of linearization points of past operations may depend on future outcomes

Future-Dependence

Some implementations are inherently future-dependent
(e.g., the Herlihy-Wing queue)

So, standard forward simulation is simple but not complete
(forward simulation can’t be used to prove all data structures)

Is there a simple proof technique for linearizability, that is
complete and can be used to obtain machine-verified proofs?

Previous Work

* Linearizability Introduced Herlihy and Wing 1990
* Forward Simulation Jonsson 1991

* Prophecy Variables Vafeiadis 2008

* Backward Simulation Schellhorn et al. 2014
e Commitment Points Bouajjani et al. 2017
 Partial-Order Maintenance Khyzha et al. 2017

* Prophecy Variables in Separation Logic Jung et al. 2019

Color key: Incomplete, , , Not Simple

Our Contributions: Proof Technique

Meta-Configurations Tracking proof technique for Linearizability
e Universal: Objects of any type can be handled

* Complete: Any algorithm that is linearizable can be proved so
First such forward reasoning technique

Proofs can be Machine-Certified

Our Contributions: Strong Linearizability

We also introduce a related proof technique, called Singleton
Tracking, which is a universal, sound, and complete forward-
reasoning technique to prove Strong Linearizability (a close-cousin
of linearizability).

Our Contributions: Machine-verified Proofs

* Herlihy-Wing Queue
* Intricate future-dependent linearization structure
* Jayanti Snapshot (single-writer, single-scanner)
e Efficient algorithm with future-dependent linearization
* Jayanti-Tarjan Union-Find Objects
* Widely-used across domains & in Google’s graph-mining library

Computation Citation #cores Benchmark speed-up
Spatial Clustering [Wang et al] 36 Sequential 5-33x
Structural Clustering [Tseng et al] 48 Sequential 5-32x
Model Checking [Bloemen] 64 Sequential 14.16 — 24.35 x
Connected Components [Dhulipala et al] 72 Multicore 1.5 -4.02x

Our ldea

* Given original algorithm A:

— Design Augmentation A* that tracks the set M of all possible atomic
reference objects, corresponding to all possible linearizations

THEOREM

A is linearizable iff M # @ is invariant of A*
N J

Meta-Configurations

m, R O O—1
__~ Jenq(5)

T, ——O0——0- 0]
—— enq(9)

UE!

T ¢ @
% deq()

Time

M ={

State: (5)

m,: (enq, 5, ack)
,: (enq, 9, -)
3 (= — —

State: (9)
m,: (enq, 5,-)
1,: (enq, 9, ack)

State: (9, 5)

m,: (enq, 5, ack)
,: (enq, 9, ack)
T

m,: (deq, —, —)

State: (5)

m,: (enq, 5, ack)
1,: (enq, 9, ack)
i =) = —

m,: (deq,—, 9)

State: ()

m,: (enq, 5, -)
1,: (enq, 9, ack)
Ty (= — —

m,: (deq,—, 9)

Meta-Configurations

.
__~ Jenq(5)

.
——— enq(9)

¢
1 deq()

Time

M =

State: (5)
m,: (enq, 5, ack)
,: (enq, 9, -)

3 (= — —)
m,: (deq, —, —)

State: (9)

m,: (enq, 5,-)
1,: (enq, 9, ack)
3 (= — -)

m,: (deq, —, —)

State: (9, 5)
m,: (enq, 5, ack)
,: (enq, 9, ack)

State: (5)
m,: (enq, 5, ack)
,: (enq, 9, ack)

m,: (enq, 5, -)
1,: (enq, 9, ack)

How we track all meta-configurations

Initially M := {m,}, where m, has the initial state and all processes are idle

Three Update Rules:
1. When ntinvokes op(arg)
For each m € M: update m.it from (-, —, —) to (op, arg, —)
2. When rtreturns r for op(arg)
Filter out each m € M if m.1t’s third field is not r
otherwise, update m.mt to (—, —, —) since mt is now idle
3. When mt executes a step

Evolve each m € M to reflect that any set of pending operations can
linearize in any order.

Meta-Configurations Tracking

Initialize

M :={m,}, where m,.state is initial state, Vit € II, my.m= (-, —, —
Update Rules:
* When rtinvokes op(arg)

M :={m’ | 3me M:m’.m = (op, arg, —) and otherwise m’ = m}
 When rt executes a step

M :={m' | 3m e M, 3S S pending(m), Aa € perm(S): m' = a(m)}
* When mt returns r for op(arg)

M :={m’' | Ame M: m.m.res=r, m'.n = (-, —, -), and o/w m’' = m}

Meta-Configurations Tracking: Main Theorem

* For an algorithm A, let A* be the same algorithm augmented
with a variable M that tracks all meta-configurations.

4)
THEOREM

A is linearizable iff M # @ is invariant of A*
g)

Herlihy-Wing Queue v

3

Initially A[0,1,2,..] =[L, L, 1L,.]and X =0 Dequeue():
// read X; scan A[O,...,X-1] and

Enqueue(v): return first found element; try
// take next empty slot & place v into it. again, if no element is found.
s := X.F&Inc() while (true)
Als] :=v len := X

for(s:=0;s < len; s++)
r .= A[s].swap(Ll)
if r 1= L thenreturnr

Herlihy-Wing Queue: Proof

Want to prove: M # {} is an invariant of A*
* Main Intellectual Work: Identify structure of M.

e Strengthen to Inductive Invariant
* Proof by Induction: over the length of A*

* Encode the proof in TLAPS and let the machine verify!

Herlihy-Wing Queue: Proof

T = O NIx NIogANI NN NI NIy NTye ATy
AN sANIOANLGANIGANIGANT; NIgANIg ATy AT

In the above expression, the various conjuncts on the right hand side are defined below.
e 1 =M=#=0
o Ix=XeN" Jp=VkeN":Q[k] e N*U{L} , I, =Vnell:v, e N' , [;=Vnell:i, e N
LH=Vrell:l, eNY I =Vrell: j, e NV I, =Vnell:x, e NFU{L}, I =Vm eIl pcy € [9]
Im=Mc {(o,.f):0€ Upen (NH)", f € ({ENQUEUE, DEQUEUE} X (N* U {L}) x (N* U {ack, L}))1}
Lis=Vrell:Y(o,f) e M:pcr € {1,5} = f(x)=1(L,1,1)
L=Vanell:V(o,f) e M:pcy =2 = f(x) = (ENQUEUE, 0y, L)
ILi=Voell:V(o,f) e M:per =3 = f(x) € {ENQUEUE} X {0} X {ack, L} A (1 < ix < X) A (Qlix] =1)
ANV el = {m}:pcy € {3,4} = iy #ix)
Ii=Vnell:VY(o,f) e M:pcy =4 = f(n) € {ENQUEUE} X {0} X {ack, L} A (1 < iy < X)
ANV el = {m}:pcy € {3,4} = iy #ip)
Iy=Vnell:VY(o,f) e M:pcy =6 = f(x) = (DEQUEUE, L, 1)
I;=Voell:V(o,f) e M:pcr =7 = f(x) = (DEQUEUE, L, L) A1 <] £ X
Ig=Vmell:Y(o,f) e M:pcy =8 = f(x) = (DEQUEUE, L, L) A1 < jr <l <X
Iy=Vrnell:VY(o,f) e M:pcy =9 = f(x) € {Degueve} x {1} x (N*U{1})
I,=VkeN':k>X-1= Qlk]=1
I, =VA C [X —1]: GoodEngSet(A) = (Vs € Perm(A) : (JInvSeq(s)
= (3C € M : GoodRes(A,C) A ValuesMatchInds(s,C))))

+ GoodEngSet(A) 2 Vke [X-1]: (Qlk]l#L = ke A)A((Qlk]=LArkeA) = An' €ell:pc =3 Aiypy =k)
« JInvSeq(s) =2 Vmne [|s|]]:(n<mAsy, <spn AQ[sm] #L) = (Ax" €ll: pey =8Asy <l Asyy < jnpr)

ack if (pc,l.r =3 Ay €A) Vpe, =4
+ GoodRes(A,C) =V¥Vxn' el C.f(xn").res =4x, ifpcy =9

1 otherwise.
« ValuesMatchlnds(s,C) = C.o = (ay, ay, . . ., a|s|) where Vk € [[s]]

_ {Q[Sk] if Q[sk] # L
ap =

0, where 7”7 € I1: pc,.r =3 ANy = si.

Fig. 5. Invariant 7 of A(O), where O is the implementation of the queue tracker in Figure 4.

THEOREM InductiveInvariantNL == Spec => []InvNL
<1> USE AckBotDef DEF InvNL, PosInts
<1> SUFFICES /\ (Init => InvNL)

[] []
—| r‘ I h _WI n /\ (InvNL /\ [Next]_vars => InvNL')
BY PTL DEF Spec

<1>1., Init => InvNL

Machine Verification in TLAPS . ==

<2> USE DEF Init
<2>1. TypeOK
BY InitTypeSafety

<2>2, Inv_E2
BY DEF Inv_E2
<2>3, Inv_E3
. . . . BY DEF Inv_E3
* Proof of full inductive invariant ot T Da
. v_D2
THEOREM InductiveInvariant == Spec => []Inv BY DEF Inv_D2
<2>5, Inv_D3
BY InductivelInvariantNL, LinearizabilityFromInvNL, PTL DEF Inv, InvNL BY DEF Inv D3
<2>6. Inv_Q
_ _ o BY DEF Inv_Q
* Proof of linearizability <2>7. Inv_Main
GoodEngSet(A),
BY InductivelInvariant, PTL DEF Inv, Linearizable NEW seq \in Perm(A),
JInvSeq(seq)

PROVE \E ¢ \in M : /\ ValuesMatchInds(seq, c.sigma)
/\ GoodRes(A, c.fres)
BY Zenon DEF Inv_Main
<3>1. A= {}
BY DEF GoodEngSet
<3>2, Cardinality(A) = @
BY <3>1, Zenon DEF Cardinality
<3>3. seq = << >>
BY <3>1, <3>2 DEF Perm, JInvSeq
<3> QED
BY <3>1, <3>3 DEF ValuesMatchInds, GoodRes
<2> QED
BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF InvNL
<1>2. InvNL /\ [Nextl_vars => InvNL'
<2> SUFFICES ASSUME InvNL /\ [Next]_vars

Conclusion

Machine-verification of concurrent data structures can help avoid errors in mission
critical deployments.

We introduced Meta-Configurations Tracking: the first universal, sound, and
complete, forward-reasoning proof technique for linearizability

— Easy to express proofs of even complex future-dependent algorithms (e.g., Herlihy-Wing
gueue, Jayanti’s Snapshot)

— We have verified widely used concurrent objects (e.g., Jayanti-Tarjan Union-Find objects)
— Proved using TLA+ Proof System

Ongoing work: We are expanding the technique to variants of Linearizability

We would love to see these techniques used to machine-certify more important and
interesting concurrent algorithms

We’'d love to see support for Meta-Configurations Tracking in verification tools

Links

github.com/google/graph-mining

[POPL 24] Jayanti, Jayanti, Yavuz, Hernandez

Meta-Configuration Notation

State
State: (9, 5)

,: (enq, 5, ack)

1,: (enq, 9, ack)

Current Argument Response
Operation

