
Machine-Verifying Concurrent Data
Structures

Siddhartha Jayanti

Google Research

Dartmouth

Collaborators and Co-authors
[POPL 2024] with Prasad Jayanti, Ugur Yavuz, Lizzie Hernandez
[DIST 2021 , PODC 2019, PODC 2016] with Robert Tarjan
[Google Research] with several, including Laxman Dhulipala, Guy Blelloch

ProblemAlgorithmData Structure

NavigationShortest PathsPriority Queue

ClusteringConnected ComponentsUnion Find

Motivation: Fast Data Structures

- Fast Data Structures Fast Algorithms

- Fast Concurrent Data Structures Fast Parallel Algorithms

Motivation: Fast Concurrent Data Structures

Goal

Design and Deploy Fast and
Scalable Multicore (i.e.,

Concurrent) Data Structures

Google open source graph-mining library

https://github.com/google/graph-mining

Asynchrony makes concurrent algorithm design notoriously hard
• 𝑝𝑡 possible executions of length 𝑡

• Uncountably many infinite executions

• ALL possible executions must produce desired behavior

Subtle Race Conditions: some “hard to detect” executions goes wrong

Challenge

Challenge

Mars Pathfinder Rover Northeast Blackout of 2003 Therac-25

Multi-million dollar
space project
jeopardized

~45 Million people in the
US affected by power

cuts which lasted 8 hours

Patients given Radiation
doses >100x desired

amount; 3 deaths

Asynchrony makes concurrent algorithms hard to design and prove correct

Subtle race conditions have plagued even mission-critical concurrent code

Goal

Machine-verified proofs of
correctness (i.e., linearizability)

for concurrent data objects

Each operation must appear to take effect atomically, i.e.,

instantaneously at some point between its invocation and completion

Correctness = Linearizability
[Herlihy & Wing, 1990]

𝜋1

𝜋2

𝜋3

Time

enq(1)

enq(3)

deq()

enq(2)

deq()

return 2

return 1

𝜋1

𝜋2

𝜋3

Time

enq(1)

enq(3)

deq()

enq(2)

deq()

Forward Simulation: A Simple Proof Technique
[Jonsson, 1991]

return 2

return 1

• Maintain an atomic reference object

• Induct over arbitrary run

• Identify Linearization Points as they occur

• Show that return values of implemented object match those of the atomic object
if operations taking place at linearization points

𝜋1

𝜋2

𝜋3

Time

enq(1)

enq(3)

deq()

enq(2)

deq()

But what if…

return 2

return 3

• Is this linearizable?

• Actually, it is linearizable: just with different linearization points

• Lessons:
• We can’t always determine linearization points as they occur

• Our choice of linearization points of past operations may depend on future outcomes

Future-Dependence

Some implementations are inherently future-dependent

(e.g., the Herlihy-Wing queue)

So, standard forward simulation is simple but not complete

(forward simulation can’t be used to prove all data structures)

Is there a simple proof technique for linearizability, that is
complete and can be used to obtain machine-verified proofs?

Previous Work

• Linearizability Introduced Herlihy and Wing 1990

• Forward Simulation Jonsson 1991

• Prophecy Variables Vafeiadis 2008

• Aspect-Oriented Proofs Henzinger et al. 2013

• Backward Simulation Schellhorn et al. 2014

• Commitment Points Bouajjani et al. 2017

• Partial-Order Maintenance Khyzha et al. 2017

• Prophecy Variables in Separation Logic Jung et al. 2019

• Category Theory Based Olivera-Vale et al. 2023

Color key: Incomplete, Not Universal, Unmechanized, Not Simple

Our Contributions: Proof Technique

Meta-Configurations Tracking proof technique for Linearizability

• Universal: Objects of any type can be handled

• Complete: Any algorithm that is linearizable can be proved so

First such forward reasoning technique

Proofs can be Machine-Certified

Our Contributions: Strong Linearizability

We also introduce a related proof technique, called Singleton
Tracking, which is a universal, sound, and complete forward-
reasoning technique to prove Strong Linearizability (a close-cousin
of linearizability).

Our Contributions: Machine-verified Proofs

• Herlihy-Wing Queue
• Intricate future-dependent linearization structure

• Jayanti Snapshot (single-writer, single-scanner)
• Efficient algorithm with future-dependent linearization

• Jayanti-Tarjan Union-Find Objects
• Widely-used across domains & in Google’s graph-mining library

Computation Citation #cores Benchmark speed-up

Spatial Clustering [Wang et al] 36 Sequential 5 – 33×

Structural Clustering [Tseng et al] 48 Sequential 5 – 32×

Model Checking [Bloemen] 64 Sequential 14.16 – 24.35 ×

Connected Components [Dhulipala et al] 72 Multicore 1.5 – 4.02×

Our Idea

• Given original algorithm A:

– Design Augmentation A∗ that tracks the set 𝑀 of all possible atomic
reference objects, corresponding to all possible linearizations

THEOREM
A is linearizable iff 𝑀 ≠ ∅ is invariant of A∗

ret 9

𝜋1

𝜋2

𝜋3

Time

enq(9)

𝑡1

Meta-Configurations
State: (9, 5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

enq(5)

State: (5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, 9)

State: ()
𝜋1: (enq, 5, –)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, 9)

State: ()
𝜋1: (enq, 5, –)
𝜋2: (enq, 9, –)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

State: (5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, –)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

State: (9)
𝜋1: (enq, 5,–)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

𝜋4 deq()

{ }𝑀 =

ret 9

𝜋1

𝜋2

𝜋3

Time

enq(9)

𝑡1

Meta-Configurations

{ }

State: (9, 5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

enq(5)

State: (5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, 9)

State: ()
𝜋1: (enq, 5, –)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, 9)

State: ()
𝜋1: (enq, 5, –)
𝜋2: (enq, 9, –)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

State: (5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, –)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

State: (9)
𝜋1: (enq, 5,–)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

𝜋4 deq()

𝑀 =
𝑡2

State: (5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (–, –, –)

State: ()
𝜋1: (enq, 5, –)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (–, –, –)

How we track all meta-configurations

Initially 𝑀 ∶= {m0}, where m0 has the initial state and all processes are idle

Three Update Rules:

1. When π invokes op(arg)

For each m ∊ 𝑀: update m.π from (–, –, –) to (op, arg, –)

2. When π returns r for op(arg)

Filter out each m ∊ 𝑀 if m.π’s third field is not r

otherwise, update m.π to (–, –, –) since π is now idle

3. When π executes a step

Evolve each m ∊ 𝑀 to reflect that any set of pending operations can
linearize in any order.

Meta-Configurations Tracking

Initialize

𝑀 ∶= {m0}, where m0.state is initial state, ∀π ∈ Π, m0.π = (–, –, –)

Update Rules:

• When π invokes op(arg)

𝑀 ∶= {m′ | ∃m∊ 𝑀:m′.π = (op, arg, –) and otherwise m′ = m}

• When π executes a step

𝑀 ∶= {m′ | ∃m ∊ 𝑀, ∃S ⊆ pending(m), ∃𝛼 ∊ perm(S): m′ = 𝛼(m)}

• When π returns r for op(arg)

𝑀 ∶= {m′ | ∃m∊ M: m.π.res = r, m′.π = (–, –, –), and o/w m′ = m}

Meta-Configurations Tracking: Main Theorem

• For an algorithm A, let A∗ be the same algorithm augmented
with a variable 𝑀 that tracks all meta-configurations.

THEOREM
A is linearizable iff 𝑀 ≠ ∅ is invariant of A∗

Herlihy-Wing Queue

5 ⊥ 15 ⊥ ⊥A

X = 3

…
0 1 2 3 4

Initially A[0,1,2,…] = [⊥, ⊥, ⊥,…] and X = 0

Enqueue(v):

// take next empty slot & place v into it.

s := X.F&Inc()

A[s] := v

Dequeue():

// read X; scan A[0,…,X-1] and

return first found element; try

again, if no element is found.

while (true)

len := X

for (s := 0; s < len; s++)

r := A[s].swap(⊥)

if r != ⊥ then return r

Herlihy-Wing Queue: Proof

Want to prove: 𝑀 ≠ {} is an invariant of A*

• Main Intellectual Work: Identify structure of 𝑀.

• Strengthen to Inductive Invariant

• Proof by Induction: over the length of A*

• Encode the proof in TLAPS and let the machine verify!

Herlihy-Wing Queue: Proof

Herlihy-Wing Queue
Machine Verification in TLAPS

Conclusion
• Machine-verification of concurrent data structures can help avoid errors in mission

critical deployments.

• We introduced Meta-Configurations Tracking: the first universal, sound, and
complete, forward-reasoning proof technique for linearizability
– Easy to express proofs of even complex future-dependent algorithms (e.g., Herlihy-Wing

queue, Jayanti’s Snapshot)
– We have verified widely used concurrent objects (e.g., Jayanti-Tarjan Union-Find objects)
– Proved using TLA+ Proof System

• Ongoing work: We are expanding the technique to variants of Linearizability

• We would love to see these techniques used to machine-certify more important and
interesting concurrent algorithms

• We’d love to see support for Meta-Configurations Tracking in verification tools

github.com/google/graph-mining [POPL 24] Jayanti, Jayanti, Yavuz, Hernandez

Links

Meta-Configuration Notation

State: (9, 5)
𝜋1: (enq, 5, ack)
𝜋2: (enq, 9, ack)
𝜋3: (–, –, –)
𝜋4: (deq, –, –)

State

Current
Operation

Argument Response

