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Runtime Verification (RV)

A lightweight technique where a monitor
continually inspects the health of a
system under inspection at run time with
respect to a formal specification.

In distributed RV, one or more monitors
observe the behavior of a distributed
system at run time and collectively verify
its correctness with respect to its
specification.

The monitor can be centralized or
decentralized.
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Applications

Facebook developed Cassandra as an open-source, distributed, No-SQL
database management system (no normalization).
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Motivating Applications

Global predicates on analog signals like UAV position and velocity must be
monitored by the ATC, e.g., mutual separation:∧

i ̸=j

d(xi , xj) ≥ δ,

x |= �global?

|ẋ|  1, |ẏ|  1.7
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Technical Challenge 1: Combinatorial Explosion

Although distributed RV deals
with finite executions, due to
lack of a global clock, the
order of occurrence of events
cannot be determined by a
runtime monitor.

Different orders of events may
result in different verification
verdicts.

Enumerating all possible orders
at run time is not practical.

.

.

P1

P2

x1 = 1 x1 = 0

x2 = 2 x2 = 0

φ = (x1 + x2 > 1)
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Technical Challenge 1: Combinatorial Explosion
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We need to deal with a combinatorial blowup at run time!
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Technical Challenge 2: Occurrence of Faults
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Technical Challenge 2: Occurrence of Faults
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Technical Challenge 3: Continuous Signals

(x + y ≥ 10)

Even combinatorial enumeration doesn’t work!
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Our Approach: Partial Synchrony

We assume a clock
synchronization algorithm, that
ensures bounded skew ϵ between
all local clocks.

This limits the impact of
asynchrony within ϵ.
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Monitoring Distributed Systems under Partial Synchrony
(OPODIS’20)

Runtime Verification of Partially-Synchronous Distributed
System (FMSD’23)

Ritam Ganguly Anik Momtaz
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3-Valued LTL Example
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LTL3 Monitor

The LTL3 monitor for a formula φ is
the unique deterministic finite state
machine Mφ = (Σ,Q, q0, δ, λ), where
Q is the set of states, q0 is the initial
state, δ : Q × Σ → Q is the transition
function, and λ : Q → B3 is a
function such that
λ
(
δ(q0, α)

)
= [α |=3 φ], for every

finite trace α ∈ Σ∗.

φ = aU b

?

⊤ ⊥

b ¬a ∧ ¬b

a

true true

A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(4):14:1–14:64, 2011.
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Distributed Computation

A distributed computation on n
processes is a tuple (E ,⇝),
where E is a set of events
partially ordered by Lamport’s
happened-before (⇝) relation.

Each local state change is
considered an event.

Communication between
processes is represented by send
and receive message
transmissions.

.

.

P1

P2
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Distributed Computation

The local clock (or time) of a
process Pi , where i ∈ [1, n], can
be represented by an increasing
function ci : R≥0 → R≥0,
where ci (χ) is the value of the
local clock at global time χ.

For any two processes Pi and
Pj , we have
∀χ ∈ R≥0.|ci (χ)− cj(χ)| < ϵ,
with ϵ > 0 being the maximum
clock skew.

.

.

P1

P2

c1(0) = 0 c1(2) = 2 c1(4) = 4 c1(6) = 6

c2(0) = 0 c2(3) = 2 c2(4) = 3 c2(6) = 5
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Distributed Computation

In every process Pi , all events
are totally ordered. That is,
∀τ, τ ′ ∈ R+.∀σ, σ′ ∈ Z≥0.(σ <
σ′) → (e iτ,σ ⇝ e iτ ′,σ′).

If e is a message send event in
a process, and f is the
corresponding receive event by
another process, then we have
e ⇝ f .

For any two processes Pi and
Pj , and any two events
e iτ,σ, e

j
τ ′,σ′ ∈ E , if τ + ϵ < τ ′,

then e iτ,σ ⇝ e jτ ′,σ′ , where ϵ is
the maximum clock skew.

If e ⇝ f and f ⇝ g , then
e ⇝ g .

.

.
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are totally ordered. That is,
∀τ, τ ′ ∈ R+.∀σ, σ′ ∈ Z≥0.(σ <
σ′) → (e iτ,σ ⇝ e iτ ′,σ′).

If e is a message send event in
a process, and f is the
corresponding receive event by
another process, then we have
e ⇝ f .

For any two processes Pi and
Pj , and any two events
e iτ,σ, e

j
τ ′,σ′ ∈ E , if τ + ϵ < τ ′,

then e iτ,σ ⇝ e jτ ′,σ′ , where ϵ is
the maximum clock skew.

If e ⇝ f and f ⇝ g , then
e ⇝ g .
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Distributed Computation

Given a distributed
computation (E ,⇝), a subset
of events C ⊆ E is said to form
a consistent cut iff when C
contains an event e, then it
contains all events that
happened-before e. Formally,
∀e ∈ E .(e ∈ C) ∧ (f ⇝ e) →
f ∈ C .

The frontier of a consistent cut
C , denoted front(C) is the set
of events that happen last in
the cut.

.
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Formal Problem Statement

A valid sequence of consistent cuts is of the form C0C1C2 · · · , where for
all i ≥ 0, we define the set of all traces as:

Tr(E ,⇝) =
{

front(C0)front(C1) · · · | C0C1C2 · · · ∈ C
}

Problem Statement

Given a finite distributed computation (E ,⇝) and an LTL formula φ,
compute the following:

[(E ,⇝) |=3 φ] =
{
[(α,⇝) |=3 φ] | α ∈ Tr(E ,⇝)

}
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SMT-Based Solution

Solving the Problem

Given a distributed computation (E ,⇝) and an LTL formula φ, our goal is
to transform the monitoring problem into an SMT problem.

In order to ensure that all possible verdicts are explored, we generate an
SMT instance for:

1 The distributed computation (E,⇝).
2 Each possible path in the LTL3 monitor.

SMT example: Is ∀x .∃y .f (x) = y + 3 satisfiable?
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SMT-Based Solution

SMT-based Solution (Uninterpreted Function)

In order to identify the sequence
of consistent cuts whose run on
the monitor starts from q0 and
ends in qm, we introduce an
uninterpreted function
ρ : Z≥0 → 2E .

If the SMT instance is satisfiable,
then the interpretation of ρ is the
sequence of consistent cuts that
ends in monitor state qm.

Otherwise, no ordering of
concurrent events results in the
verdict given by state qm.

.

.

x

y

3 5 6 9

1 3 5 7

φ = (x > y)
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SMT-based Solution (Uninterpreted Function)
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SMT-Based Solution

SMT-based Solution (Uninterpreted Function)

In order to identify the sequence
of consistent cuts whose run on
the monitor starts from q0 and
ends in qm, we introduce an
uninterpreted function
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SMT-Based Solution

SMT-based Solution (Constraints over ρ)

We first identify the constraints over uninterpreted function ρ, whose
interpretation is a sequence of consistent cuts that starts and ends in the given
monitor automaton path:

1 Each element in the range of ρ is a consistent cut:

∀i ∈ [0,m].∀e, e′ ∈ E .
(
(e′ ⇝ e) ∧ (e ∈ ρ(i))

)
→

(
e′ ∈ ρ(i)

)

2 Each consistent cut in the sequence has one more event than its
predecessor:

∀i ∈ [0,m]. |ρ(i + 1)| = |ρ(i)|+ 1

3 Each predecessor of a consistent cut is a subset of the current consistent
cut:

∀i ∈ [0,m]. ρ(i) ⊆ ρ(i + 1)
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Optimizations

Optimization – Segmentation

.

.

P1

P2

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7



Motivation Monitoring Discrete-event Distributed Systems Monitoring Timed Properties of Crosschain Protocols Monitoring Distributed Cyber-physical systems Fault-tolerant Decentralized Monitoring Conclusion

Optimizations

Optimization – Segmentation

.

.

P1

P2

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7



Motivation Monitoring Discrete-event Distributed Systems Monitoring Timed Properties of Crosschain Protocols Monitoring Distributed Cyber-physical systems Fault-tolerant Decentralized Monitoring Conclusion

Optimizations

Optimization – Segmentation

.

.

P1

P2

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7



Motivation Monitoring Discrete-event Distributed Systems Monitoring Timed Properties of Crosschain Protocols Monitoring Distributed Cyber-physical systems Fault-tolerant Decentralized Monitoring Conclusion

Optimizations

Optimization – Segmentation

.

.

P1

P2

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7



Motivation Monitoring Discrete-event Distributed Systems Monitoring Timed Properties of Crosschain Protocols Monitoring Distributed Cyber-physical systems Fault-tolerant Decentralized Monitoring Conclusion

Optimizations

Optimization – Segmentation
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Optimizations

Optimization – Exploiting Parallel Processing

seg1 seg2 seg3 seg4
q0 q⊤ q⊥ q0 q⊤ q⊥ q0 q⊤ q⊥ q0 q⊤ q⊥

q0 T F F T T F T T T T T T
q0 q⊤ q⊥ q0 q⊤ q⊥ q0 q⊤ q⊥ q0 q⊤ q⊥

q⊤ F F F F T F F T F F T F
q0 q⊤ q⊥ q0 q⊤ q⊥ q0 q⊤ q⊥ q0 q⊤ q⊥

q⊥ F F F F F T F F T F F T

Figure: Reachability Matrix for aU b
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Evaluation

Experimental setup

Two phases
Data Collection

Synthetic Experiments: single core and effect of parallelization

Cassandra: moderate and extreme load scenario

Verification

Events are evenly spread out over the entire length of the trace using a
delay, and computation and communicating events are uniformly
distributed.

Parameters: (1) Number of processes (2) Computation duration (3)
Number of segments (4) Event rate per process per second (5) Maximum
clock skew (6) Number of messages sent per second (7) Formulas under
monitoring LTL1 formulas under monitoring

1All LTL specification are taken from:
https://matthewbdwyer.github.io/psp/patterns/ltl.html

https://matthewbdwyer.github.io/psp/patterns/ltl.html
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Evaluation

Impact of Partial Synchrony and Predicate Structure
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Evaluation

Parallelization and Segment Count
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Evaluation

How realistic is it?

Extreme load scenario: Netflix, where 1 million writes per second

Moderate load scenario: Google Drive, which allows maximum 500
requests per 100 seconds per project and 100 requests per seconds per
user, i.e.,5events/sec per project and a user can generate1event/sec on an
average
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Evaluation

Cassandra Setup

Cassandra is a open-source, distributed, no-SQL database.

Cluster 1

Node 11

Node 12

Node 13

Node 14 Node 21 Cluster 2

Node 22

Node 23

The fastest datacenter ping was received at 41ms.

We use a private broadband that offers a speed of 100 Mbps with 100ms
latency.

Processes are capable of reading, writing, and updating all entries of the
database with uniform distribution.

Each process selects the available node at run time.



Motivation Monitoring Discrete-event Distributed Systems Monitoring Timed Properties of Crosschain Protocols Monitoring Distributed Cyber-physical systems Fault-tolerant Decentralized Monitoring Conclusion

Evaluation

Cassandra Specification

Eventual consistency:

φrw =
n∧

i=0

(
write(i) → read(i)

)
Cassandra does not implicitly support normalization.

Student(id , name) Enrollment(id , course).

φwrc = ¬
(
¬write(Student.id) U write(Enrollment.id)

)
φdrc = ¬

(
¬delete(Enrollment.id) U delete(Student.id)

)
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Evaluation

Cassandra Experiments
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Distributed RV of MetricTemporal Properties for Cross-Chain
Protocols (ICDCS’22)

Maurice Herlihy Ritam Ganguly Yingjie Xue

Aaron Jonckheere Parker Ljung
Benjamin

Schornstein
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Vulnerabilities in Blockchain Transactions

Cryptocurrency is a 2.2 trillion US dollar market

Smart contract is a program running on the blockchain which gets
triggered automatically. In this way, the transfer of assets can be
automated by the rules in the smart contracts, and human intervention
cannot stop it.

If the smart contract has bugs and does not do what is expected, then
lack of human intervention may lead to massive financial losses.

Parity Multisig Wallet smart contract 2 version 1.5 included a vulnerability
which led to the loss of 30 million US dollars.

2https://github.com/openethereum/parity-ethereum
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Cross Chain Transactions

Alice Apricot Banana Bob
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Cross Chain Transactions
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Overview of our Solution
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φspec = ¬Apr.Redeem(bob) U [0,8)Ban.Redeem(alice)

φspec_1 = ¬Apr.Redeem(bob) U [0,5)Ban.Redeem(alice)

φspec_2 = ¬Apr.Redeem(bob) U [0,4)Ban.Redeem(alice)

φspec_3 = ¬Apr.Redeem(bob) U [0,3)Ban.Redeem(alice)
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Overview of our Solution
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φspec_1 = ¬Apr.Redeem(bob) U [0,5)Ban.Redeem(alice) = true

φspec_2 = ¬Apr.Redeem(bob) U [0,4)Ban.Redeem(alice) = true

φspec_3 = ¬Apr.Redeem(bob) U [0,3)Ban.Redeem(alice) = false



Motivation Monitoring Discrete-event Distributed Systems Monitoring Timed Properties of Crosschain Protocols Monitoring Distributed Cyber-physical systems Fault-tolerant Decentralized Monitoring Conclusion

Blockchain Transactions

We implemented two-party swap, multi-party swap, and auction3.

The protocols were written as smart contracts in Solidity and tested
using Ganache, a tool that creates mocked Ethereum blockchains.

We check the policies for liveness, safety, and ability to hedge against sore
loser attacks.

3Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-chain transactions
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Blockchain Transactions

We implemented two-party swap, multi-party swap, and auction3.

The protocols were written as smart contracts in Solidity and tested
using Ganache, a tool that creates mocked Ethereum blockchains.

We check the policies for liveness, safety, and ability to hedge against sore
loser attacks.

φalice_conform = [0,∆) ban.premium_deposited(alice)∧(
[0,2∆) apr.premium_deposited(bob) →

[0,3∆) apr.asset_escrowed(alice)
)
∧(

[0,4∆) ban.asset_escrowed(bob) →

[0,5∆) ban.asset_redeemed(alice)
)
∧(

¬apr.asset_redeemed(bob)U
ban.asset_redeemed(alice)

)

3Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-chain transactions
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Blockchain Transactions

We generate transaction logs
with different values for deadline
(∆) and time synchronization
constant (ϵ)
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Predicate Monitoring in Distributed Cyber-physical Systems
(RV’21) – Best Paper Award

Predicate Monitoring in Distributed Cyber-physical Systems
(STTT’23)

Monitoring Signal Temporal Logic in Distributed
Cyber-physical Systems (ICCPS’23)

Houssam abbas Anik Momtaz
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Signals

A signal (of some agent A) is a function x : [a, b] → ℜd , which is
right-continuous, left-limited, and is not Zeno.

A distributed signal is a set of signals that do not share a common clock.

Signal Retiming

A retiming function, or simply
retiming, is an increasing func-
tion ρ : R≥0 → R≥0.

An ε-retiming is a retiming
function such that:
∀t ∈ R≥0 : |t − ρ(t)| < ε. Given a
distributed signal (E ,⇝) over N
agents and any two distinct agents
Ai , Aj , where i , j ∈ [N], a retiming
ρ from Aj to Ai is said to respect
⇝ if we have
(e it ⇝ e jt′) ⇒ (t < ρ(t′)) for any
two events e it , e

j
t′ ∈ E .
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Retiming Functions

Proposition 1. Given an STL formula φ and distributed signals (E ,⇝)
over N agent, there exists a consistent cut C ⊆ E that violates φ if and
only if there exists a finite A1-local clock value t and N − 1 ε-retimings
ρn : In → I1 that respect ⇝, 2 ≤ n ≤ N, such that:

φ
(
x1(t), x2 ◦ ρ−1

2 (t), . . . , xN ◦ ρ−1
N (t)

)
= false (1)

and such that ρ−1
m ◦ ρn : In → In is an ε-retiming for all n ̸= m. Here, ‘◦’

denotes the function composition operator.
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Problem Statement

Problem Statement

Given ε > 0, a distributed signal (E ,⇝) over N agents, and a formula
φ over the N agents, find N − 1 ε-retiming functions ρ2, . . . , ρN that
satisfy the hypotheses of Prop. 1 and s.t.

φ
(
x1(t1), x2(t2), . . . , xN(tN)

)
= false (2)

Solution: Transformation to SMT solving using uninterpreted real functions to
find a violating retiming.
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Monitoring Real Distributed CPS
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Exploiting Knowledge of System Dynamics
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6 Conclusion
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Decentralized Asynchronous Crash-Resilient Runtime
Verification (CONCUR’16)

Decentralized Asynchronous Crash-Resilient Runtime
Verification (JACM’22) – Among 8 selected papers in 2022

Sergio Rajsbaum Pierre Fraigniaud Corentin Travsers
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General Lower bound Results

Lemma

Not all LTL formulas can be consistently monitored by a distributed monitor
with 4 truth values, even if monitors satisfy state coverage, and even if no
monitor crashes.

Theorem

Not all LTL formulas can be consistently monitored by a distributed monitor
with 4 truth values, even if monitors satisfy state coverage, even if no monitor
crashes and even if the monitors perform an arbitrarily large number of rounds.
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Alternation Number

Idea

We count the number of times that the valuation of a formula may change
from (called alternation number).

Alternation number

The alternation number of an LTL formula φ is the following:

AN(φ) = max
{
A(w) | w ∈ Σ∗}

where

A(w) =

{
A(w ′) + 1 if [w |=F φ] ̸= [w ′ |=F φ]

0 if length(w) = 1

where w ′ denotes the longest proper prefix of w . ■
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Obtaining Alternation Number

Theorem

The alternation number of LTL formula φ is the length of the longest
alternating walk of the LTL4 monitor of φ.

Example

⊤p⊥p

⊤ ⊥

r

a

¬a¬r

ar

r

a

truetrue

AN( (¬a¬r) ∨ [(¬a U r) ∧ a]) = 2
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Global Consistency

Lower Bound Theorem

In order to monitor an LTL formula φ by a wait-free distributed monitor, we
need at least AN(φ) + 1 truth values to ensure global consistency.

Upper Bound Theorem

An LTL formula can consistently be monitored by a wait-free distributed
monitor in LTL2k+4, if k ≥ [ 12 (min(AN(φ), n)− 1)].
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LTLk Monitor Construction
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Summary

Distributed RV under partial synchrony.

SMT-based solution.

Multicore optimization

Monitoring blockchains

Distributed RV for analog signals.

Crash-resilient RV.
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Ongoing Work

Trade-off between accuracy and scalability.
Over/under-approximation

Byzantine distributed RV.

Stream-based (I/O) distributed RV for network of DNNs.

Private distributed RV
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Commercials!

I am looking for PhD students to work on:
Runtime monitoring

Information-flow security

Causality

CSE@MSU has four open faculty positions in all areas of computer science.

Email me: borzoo@msu.edu
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Thank You!
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