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Runtime Verification (RV)

o A lightweight technique where a monitor
continually inspects the health of a
system under inspection at run time with
respect to a formal specification.

o In distributed RV, one or more monitors
observe the behavior of a distributed
system at run time and collectively verify
its correctness with respect to its
specification.

o The monitor can be centralized or
decentralized.
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Applications

@ Facebook developed Cassandra as an open-source, distributed, No-SQL
database management system (no normalization).

@@

Orw = /n\D (Write(i) — <>read(i))

i=0
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Motivating Applications

o Global predicates on analog signals like UAV position and velocity must be
monitored by the ATC, e.g., mutual separation:

/\Dd(XhXj) > 67
i

2] <1,]9] < 1.7

X = bgiobar?
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Technical Challenge 1: Combinatorial Explosion

o Although distributed RV deals
with finite executions, due to
lack of a global clock, the
order of occurrence of events p, 5 1 x1 =0
cannot be determined by a
runtime monitor.

P,

x2 =2 x2=0

P =0(x1+x >1)
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Technical Challenge 1: Combinatorial Explosion

o Although distributed RV deals
with finite executions, due to
lack of a global clock, the x v
order of occurrence of events p, 5 1/ =0
cannot be determined by a !
runtime monitor. e

o Different orders of events may P o |
result in different verification ? =2 =0

verdicts.

P =0(x1+x >1)
e Enumerating all possible orders
at run time is not practical.
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Technical Challenge 1: Combinatorial Explosion

1 1
2 {x1=0} 2 {x2=0}

3 Process P1() 3 Process P2()

4 4

5 send (P2, ml); 5 recv(ml);

6 x1=5; 6 x2=15;

7 x1=10; 7 x2=20;

8 recv(m2); 8 send (P1,m2);
) )

o 0

"
"
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Technical Challenge 1: Combinatorial Explosion

"

OOV ®ONOGAWNKRK

{x1=0}
Process P1()

send (P2, ml);

x1=5;
x1=10;
recv(m2);

"

OOV ®ONOGAWNER

{x2=0}
Process P2()

recv(ml);
x2=15;
x2=20;

send (P1,m2);

o]
s
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Technical Challenge 1: Combinatorial Explosion

n B
1 1 el
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3 Process P1() 3 Process P2() et
4 4
5 send (P2, ml); 5 recv(ml); el
6 x1=5; 6 x2=15; e
7 x1=10; 7 x2=20;
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Technical Challenge 1: Combinatorial Explosion

n B
1 1 el
2 {x1=0} 2 {x2=0} !
3 Process P1() 3 Process P2() et
4 4
5 send (P2, ml); 5 recv(ml); el
6 x1=5; 6 x2=15; e
7 x1=10; 7 x2=20;
8 recv(m2); 8 send (P1,m2); &2

2 1
) 3 ] } €
10 10 9

€

We need to deal with a combinatorial blowup at run time!
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Technical Challenge 2: Occurrence of Faults
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Technical Challenge 2: Occurrence of Faults

Praz = ED(—'EM—\&) V [(mar U n) A 031]% A
O(—az—r2) V [(ma2 U r2) A $ a2
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Technical Challenge 3: Continuous Signals

(@ t
Yy
(o) s
O(x +y > 10)

Even combinatorial enumeration doesn't work!
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Related work

@ Asynchronous

o H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. A distributed
abstraction algorithm for online predicate detection (SRDS 2013).

o S. D. Stoller. Detecting global predicates in distributed systems with clocks
(WDAG 1997).

e B. Bonakdarpour and M. Mostafa. Decentralized Runtime Verification of
LTL Specifications in Distributed Systems (IPDPS 2015).
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@ Synchronous
o A. Bauer and Y. Falcone. Decentralised LTL monitoring. FMSD 48(1-2),
2016.

o L. M. Danielsson and C. Sdnchez. Decentralized stream runtime verification
(RV 2019).

e V. T. Valapil, S. Yingchareonthawornchai, S. S. Kulkarni, E. Torng, and
M. Demirbas. Monitoring partially synchronous distributed systems using
SMT solvers (RV 2017).
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Our Approach: Partial Synchrony

@ We assume a clock
synchronization algorithm, that
ensures bounded skew ¢ between
all local clocks.

@ This limits the impact of
asynchrony within e.

Py

I —
%3 €12 1 €13 ~ €14
O T T
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I I
| |
I I
i i
O
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Outline of talk

© Monitoring Discrete-event Distributed Systems
@ SMT-Based Solution
@ Optimizations
@ Evaluation
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e Monitoring Distributed Systems under Partial Synchrony
(OPODIS’20)

e Runtime Verification of Partially-Synchronous Distributed
System (FMSD'23)

Ritam Ganguly
gl 0y
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3-Valued LTL Example
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0a () [02 =3 0q] =7
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3-Valued LTL Example

pUq (P @ @ @ [03 3 pUq]l = L



[e]e]e] Tele]

LTLs Monitor

p=alb

The LTLs monitor for a formula ¢ is
the unique deterministic finite state
machine M, = (X, Q, qo, J, ), where
Q is the set of states, qo is the initial
state, 0 : @ X X — Q is the transition
function, and A\ : Q — B3 is a b —aA-b
function such that

A(6(qo, @) = [er [=3 ], for every

finite trace o € ™.

true true

A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(4):14:1-14:64, 2011.
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Distributed Computation

o A distributed computation on n
processes is a tuple (€, ~),
where £ is a set of events
partially ordered by Lamport’s
happened-before (~) relation. e e e ew

o Each Jocal state change is
considered an event.

o Communication between
processes is represented by send
and receive message
transmissions.
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Distributed Computation

@ The local clock (or time) of a
process P;, where i € [1, n], can
be represented by an increasing
function ¢; : R>0 — R>o,
where ¢j(x) is the value of the

ca(0)=0 a(2)=2 ca(4)=4 c1(6) =6
; o o—
local clock at global time .

Py

P, © O—>
(0)=0 @(3)=2 c2(4)=3 (6) =5
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Distributed Computation

@ The local clock (or time) of a
process P;, where i € [1, n], can
be represented by an increasing
function ¢; : R>0 — R>o,

where ¢j(x) is the value of the pa®=0 a@=2 a@=4  a(6)=6
local clock at global time .
@ For any two processes P; and
Pj, we have P, O o
(0)=0 @(3)=2 (4)=3 2(6) =5

Vx € Rxo.ci(x) — ¢(x)| <,
with € > 0 being the maximum
clock skew.
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Distributed Computation

o In every process P;, all events
are totally ordered. That is,
V1,7 € RyNo,0' € Z>o.(0 <
U')—)(eﬂ,we,a)

€11 ~ €12 ~ e13 ~ e1a
2 o
P, O O—>




0000e0

Distributed Computation

o In every process P;, all events
are totally ordered. That is,
V1,7 € RyNo,0' € Z>o.(0 <
U')—)(eﬂ,we,a)

€11 ~ €12 ~ e13 ~ e1a
. . Py O——>
o If e is a message send event in
a process, and f is the y
corresponding receive event by
nother pr hen we hav
another process, then we have PG - o9 9 —

e~ f.



0000e0

Distributed Computation

o In every process P;, all events
are totally ordered. That is,
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Distributed Computation

o In every process P;, all events
are totally ordered. That is,
V1,7 € RyNo,0' € Z>o.(0 <
U')—)(eﬂ,we,a)

. . Py O——>
o If e is a message send event in
a process, and f is the N
corresponding receive event by
nother pr hen we hav
another process, then we have PG pel 9 o
e~ f.

@ For any two processes P; and
Pj, and any two events
i

eﬂ,,ei o €& if T+e< 7,

then e; , ~ ei -» Where € is
the maximum c/ock skew.

o If e~ f and f ~ g, then
e~ g.
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Distributed Computation

o Given a distributed
computation (E€,~>), a subset
of events C C £ is said to form
a consistent cut iff when C

contains an event e, then it P er e13 a
contains all events that

happened-before e. Formally,

Vee(ec C) A (f~e)— \

f e C P2 6C2>1 €22 €23 6C2>4—>
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Distributed Computation

o Given a distributed
computation (E€,~>), a subset
of events C C £ is said to form
a consistent cut iff when C
contains an event e, then it P er e13 e
contains all events that
happened-before e. Formally,
Vee(ec C) A (f~e)—
fecC. P 9 o—

@ The frontier of a consistent cut
C, denoted front(C) is the set
of events that happen last in
the cut.
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Formal Problem Statement

o A valid sequence of consistent cuts is of the form CoC1 G, - - -, where for
all i > 0, we define the set of all traces as:

THE, ~) = {front(Co)front(Cl)--- | GGG € c}
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Formal Problem Statement

o A valid sequence of consistent cuts is of the form CoC1 G, - - -, where for
all i > 0, we define the set of all traces as:

THE, ~) = {front(Co)front(Cl)--- | GGG € c}

Problem Statement

Given a finite distributed computation (€,~+) and an LTL formula ¢,

compute the following:

(€.~ s ¢l = {[(a =) ks ¢l | a € TH(E, ) }
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Solving the Problem

o Given a distributed computation (€,~+) and an LTL formula ¢, our goal is
to transform the monitoring problem into an SMT problem.

@ In order to ensure that all possible verdicts are explored, we generate an
SMT instance for:

@ The distributed computation (€, ~~).
© Each possible path in the LTL3 monitor.

o SMT example: Is Vx.3y.f(x) = y + 3 satisfiable?
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SMT-based Solution (Uninterpreted Function)

@ In order to identify the sequence
of consistent cuts whose run on
the monitor starts from go and
ends in gm, we introduce an

uninterpreted function « 3 5 6 9
p: Zzo — 28.
yog 3 5 7
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@ In order to identify the sequence
of consistent cuts whose run on
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ends in gm, we introduce an 2(2)
uninterpreted function 3 5 6 9
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o If the SMT instance is satisfiable,
then the interpretation of p is the y 9 9 o—
sequence of consistent cuts that
ends in monitor state gnm.
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@ In order to identify the sequence
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. . [ r—
uninterpreted function x & 5 8 l
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o If the SMT instance is satisfiable,
then the interpretation of p is the y ¢ | 9 c o

sequence of consistent cuts that
ends in monitor state gnm.

e=0(x>y)



SMT-based Solution (Uninterpreted Function)

@ In order to identify the sequence
of consistent cuts whose run on
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ends in gm, we introduce an p(4)

uninterpreted function « 3 5 6 9
p: Zzo — 28.
o If the SMT instance is satisfiable,
then the interpretation of p is the y 9 9 c o

sequence of consistent cuts that
ends in monitor state gnm.
e=0(x>y)
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@ In order to identify the sequence
of consistent cuts whose run on
the monitor starts from go and
ends in gm, we introduce an p(8)
uninterpreted function
p: Zzo — 28.

o If the SMT instance is satisfiable,
then the interpretation of p is the y 9 9 o
sequence of consistent cuts that
ends in monitor state gnm.




SMT-based Solution (Uninterpreted Function)

@ In order to identify the sequence
of consistent cuts whose run on
the monitor starts from go and
ends in gm, we introduce an
uninterpreted function
p: Zzo — 28.

o If the SMT instance is satisfiable,
then the interpretation of p is the y 9
sequence of consistent cuts that
ends in monitor state gnm.

@ Otherwise, no ordering of
concurrent events results in the
verdict given by state gp,.
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SMT-based Solution (Constraints over p)

We first identify the constraints over uninterpreted function p, whose
interpretation is a sequence of consistent cuts that starts and ends in the given
monitor automaton path:

@ Each element in the range of p is a consistent cut:

Vi€ [0,m] Ve, e € 5.((e’ we)A(e€ p(i))) - (e' € p(i))
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@ Each consistent cut in the sequence has one more event than its
predecessor:
Vi € [0, m]. |p(i + )] = [p(i)] +1
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SMT-based Solution (Constraints over p)

We first identify the constraints over uninterpreted function p, whose
interpretation is a sequence of consistent cuts that starts and ends in the given
monitor automaton path:

@ Each element in the range of p is a consistent cut:
Vi € [0, m].Ve, € € 5.((e’ ~e)A(e€ p(i))) - (e' € p(i))

@ Each consistent cut in the sequence has one more event than its
predecessor:
Vi € [0, m]. |p(i + )] = [p(i)] +1

© Each predecessor of a consistent cut is a subset of the current consistent
cut:
Vi € [0, m]. p(i) C pli +1)
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Optimization — Exploiting Parallel Processing

S€81 S€8> S€83 S€8a
qdo qT aL do qT qL do aT qL qo qT qL
g | T F F | T | T F | T | T T|T| T T
qo | 9T | gL | Go | gT | gL | Qo | 9T | 9L | Qo | 9T | GL
qgr | F F F F| T F F| T F F| T F
G | g7 | gL | o | gT | gL | g | gT | 9L | g0 | g7 | qv
gL | F F F F F T F F T F F T

Figure

: Reachability Matrix for ald b
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Optimization — Exploiting Parallel Processing

S€81 S€8> S€83 S€8a

do ‘ qr ‘ gL | 9o | gt | gL [ Qo | gT | 9L | 90 | 9T | gL
g | T F F T | T F T| T T | T | T T
qo | 9T aL do | T qL do aT qL qo | 9T qL
gr | F F F F T F F T F F T F

Go | gT | 9L [ Go | gT | gL | g | gT | gL | 90 | 9T | gL
o | F|F | F|F|F|T|F|F|TI|F|F|T

Figure: Reachability Matrix for ald b
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Optimization — Exploiting Parallel Processing

S€81 S€8> S€83 S€8a
do ‘ qr ‘ qL | qo ‘ qr ‘ gL | g [ gr [ gL | g [ gt | g1
do =[- F F I- T F T T T T T T

qo qT qL do qr qL do qT qL qo qT q.L
gr | F| F| F|F| ¥=—F | F | T|F|F|T]|F
qo | g1 q.L do | 9T qL do qT qL qo | g1 qL
g |F|F | F|F|F|TI|F|F|T|F|F|T

Figure: Reachability Matrix for ald b
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Optimization — Exploiting Parallel Processing

S€81 S€8> S€83 S€8a
qo‘qr‘cu qo‘qT‘qL qo‘qT‘cu qo | 9T | 9L

do i i i i i i i i
qo qT qL do qr qL do qT qo qT q.L

gr | F| F | F | F| FF4F|F F|T|F

g | gr | gL | g | gr | gL | q0 | gt qu gr | qu
o |F| F|F|F|F|T|F|F

[=

=

Figure: Reachability Matrix for ald b
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Optimization — Exploiting Parallel Processing

S€81 S€8> S€83 S€8a
qo‘qT‘qL qo‘qT‘qL qo‘qT‘qL qo}qT‘qi

do i i i i i i i i
qo | 9T | 9L | Go | gT | gL | Go | 9T | 4L | Qo | 9T | q1
gr |F| F | F | F| ¥—F|F+F{F+F+F+F
go | g7 | 9L | 9o | 9T | gL | Qo | 9T | 9L | Go | 9T | qL
qu | F| F | F|F|F|T|F|F F|F

Figure: Reachability Matrix for ald b
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Experimental setup

@ Two phases
o Data Collection

@ Synthetic Experiments: single core and effect of parallelization

o Cassandra: moderate and extreme load scenario

LAll LTL specification are taken from:
https://matthewbdwyer.github.io/psp/patterns/Itl.html
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Experimental setup

@ Two phases
o Data Collection
@ Synthetic Experiments: single core and effect of parallelization

o Cassandra: moderate and extreme load scenario

o Verification

o Events are evenly spread out over the entire length of the trace using a
delay, and computation and communicating events are uniformly
distributed.

@ Parameters: (1) Number of processes (2) Computation duration (3)
Number of segments (4) Event rate per process per second (5) Maximum
clock skew (6) Number of messages sent per second (7) Formulas under
monitoring LTL! formulas under monitoring

LAll LTL specification are taken from:
https://matthewbdwyer.github.io/psp/patterns/Itl.html
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Impact of Partial Synchrony and Predicate Structure
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Parallelization and Segment Count
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How realistic is it?

o Extreme load scenario: Netflix, where 1 million writes per second

@ Moderate load scenario: Google Drive, which allows maximum 500
requests per 100 seconds per project and 100 requests per seconds per
user, i.e.,5events/sec per project and a user can generatelevent/sec on an
average
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Cassandra Setup

Cassandra is a open-source, distributed, no-SQL database.

@ The fastest datacenter ping was received at 41ms.

@ We use a private broadband that offers a speed of 100 Mbps with 100ms
latency.

o Processes are capable of reading, writing, and updating all entries of the
database with uniform distribution.

@ Each process selects the available node at run time.
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Cassandra Specification

e Eventual consistency:

Prw = /n\D (write(i) — <>read(i))

i=0

o Cassandra does not implicitly support normalization.

Student(id, name) Enrollment(id, course).

Pwre = ﬁ(ﬁwrite(Student.id) u Write(EnroIIment.id))

Pdre = —\(—\delete(Enrollment.id) u delete(Student.id))
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Cassandra Experiments
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Outline of talk

© Monitoring Timed Properties of Crosschain Protocols
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o Distributed RV of MetricTemporal Properties for Cross-Chain
Protocols (ICDCS'22)

Maurice Herlihy i Yingjie Xue

Wi

Benjamin
Schornstein
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Vulnerabilities in Blockchain Transactions

o Cryptocurrency is a 2.2 trillion US dollar market

@ Smart contract is a program running on the blockchain which gets
triggered automatically. In this way, the transfer of assets can be
automated by the rules in the smart contracts, and human intervention
cannot stop it.

2https://github.com/openethereum /parity-ethereum



[e]e] le]elele)

Vulnerabilities in Blockchain Transactions

o Cryptocurrency is a 2.2 trillion US dollar market

@ Smart contract is a program running on the blockchain which gets
triggered automatically. In this way, the transfer of assets can be
automated by the rules in the smart contracts, and human intervention
cannot stop it.

o If the smart contract has bugs and does not do what is expected, then
lack of human intervention may lead to massive financial losses.

o Parity Multisig Wallet smart contract 2 version 1.5 included a vulnerability
which led to the loss of 30 million US dollars.

2https://github.com/openethereum /parity-ethereum
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Overview of our Solution

SetUp
Apr Apr
1
SetUp
Banh —O0—— Ban
! seg1 Seg3

® Qspec = 7Apr.Redeem(bob) U o 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp
Apr Apr
1
SetUp Deposit(p, + pb)
Ban —O0——70O— Ban
! seg1 4 Seg3

® Qspec = ~Apr.Redeem(bob) U o 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps)

Apr ——O———-0O0—— Apr
1 3
SetUp Deposit(p, + pb)
Ban —O0——70O— Ban
! seg1 4 Seg3

® Qspec = ~Apr.Redeem(bob) U o 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps) Escrou(h, ta)
Apr —O0——O— Apr —O—n—————————
1 3 5
SetUp Deposit(ps + ps)
Ban —O0——70O— Ban
1 segy 4 Seg3

® Qspec = 7Apr.Redeem(bob) U o 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps) Escrou(h, ta)
Apr —O0——O— Apr —O—n—————————
1 3 5
SetUp Deposit(ps + ps) Escrow(h, tg)
Ban ——O0——O— Ban —O——————
1 seg, 4 6 seg,

® Qspec = 7Apr.Redeem(bob) U o 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps) Escrou(h, ta)
Apr —O0——O— Apr —O—n—————————
1 3 5
SetUp Deposit(ps + ps) Escrow(h, tg) Redeem(alice)
Ban ——O——————O— Ban —O0——— O
1 e, 4 6 seq, 7

® Qspec = 7Apr.Redeem(bob) U [p 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps) Escrou(h, ta) Redeem(bob)
Apr —O0——O— Apr —O——mO—
1 3 5 7
SetUp Deposit(ps + ps) Escrow(h, tg) Redeem(alice)
Ban ——O——————O— Ban —O———— O
1 e, 4 6 seg, 7

® Qspec = 7Apr.Redeem(bob) U [p 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps) Escrowu(h, ta) Redeem(bob)
Apr —O0——O— Apr —O——O—
1 [2,3,4] 5 7
SetUp Deposit(ps + ps) Escrow(h, tg) Redeem(alice)
Ban ——O——————O— Ban —O———— O
1 seg, [3,4,5] 6 seg, 7

® Qspec = 7Apr.Redeem(bob) U [p 5)Ban.Redeem(alice)



[e]e]ele] lele)

Overview of our Solution

SetUp Deposit(ps) Escrow(h, ta) Redeem(bob)
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SetUp Depo§it(Pa + pb) Escrow(h, tg) Redeem(alice)
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Overview of our Solution

SetUp  Deposit(ps) Escrow(h, ta) Redeem(bob)
Apr —O——+0O—+—— Apr —O——O—>
1 2.3,4] 5 [6.7,8]
N
SetUp Depoéit(\pa + Pb) Escrow(h, tg) Redeem(alice)
Ban —O0— Ban ——O—————0O—
1 seg, [3.4,5] 6 seg, [6,7,8]

® spec 1 = —Apr.Redeem(bob) U |o 5)Ban.Redeem(alice)
® spec_2 = —Apr.Redeem(bob) U |0 s)Ban.Redeem(alice)
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Overview of our Solution

SetUp  Deposit(ps) Escrow(h, ta) Redeem(bob)
Apr —O——+0O—+—— Apr —O——+0O—>
1 2.3.4] 5 f6.7.8]
N Ny
SetUp Depoéit(\pa + Pb) Escrow(h, tg) Redéem(é{ice)
Ban - -+ Ban 40—‘\0—/6
L seg, [3,4,5] 6 seg, [6,7,8]

® spec_1 = —Apr.Redeem(bob) U [o 5)Ban.Redeem(alice) = true
® spec_2 = —Apr.Redeem(bob) U [0 4)Ban.Redeem(alice) = true

® spec 3 = —Apr.Redeem(bob) U |0 3)Ban.Redeem(alice) = false
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Blockchain Transactions

o We implemented two-party swap, multi-party swap, and auction®.

@ The protocols were written as smart contracts in Solidity and tested
using Ganache, a tool that creates mocked Ethereum blockchains.

3Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-chain transactions
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Blockchain Transactions

o We implemented two-party swap, multi-party swap, and auction®.

@ The protocols were written as smart contracts in Solidity and tested
using Ganache, a tool that creates mocked Ethereum blockchains.

@ We check the policies for liveness, safety, and ability to hedge against sore

loser attacks. i . .
Palice_conform = [0,a) ban.premium_deposited(alice)A

( {l0,2a) @pr - premium_deposited(bob) —
<>[0,3A) apr. asset_escrowed(alice)) A
( Olo,4a) ban. asset_escrowed (bob) —
Olo,50) ban.asset_redeemed(alice) ) A
(ﬁapr .asset_redeemed (bob) U

ban.asset_redeemed(alice) )

3Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-chain transactions
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Blockchain Transactions

@ We generate transaction logs
with different values for deadline
(A) and time synchronization
constant (€)

Runtime (s)

@ We observe both true and
false verdict when e Z A 4 8 12 16 20 24 28

No. of events
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Outline of talk

@ Monitoring Distributed Cyber-physical systems
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e Predicate Monitoring in Distributed Cyber-physical Systems
(RV'21) — Best Paper Award

e Predicate Monitoring in Distributed Cyber-physical Systems
(STTT'23)

e Monitoring Signal Temporal Logic in Distributed
Cyber-physical Systems (ICCPS'23)

Houssam abbas
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Signals

o A signal (of some agent A) is a function x : [a, b] — R, which is
right-continuous, left-limited, and is not Zeno.

o A distributed signal is a set of signals that do not share a common clock.

Signal Retiming

z y
A retiming function, or simply Mﬁ l

retiming, is an increasing func- @ i
tion p: Rzo — Rzo.

o An c-retiming is a retiming
function such that:
Vt € Rxo 1 |t — p(t)] < . Given a
distributed signal (E,~-) over N
agents and any two distinct agents
Ai, Aj, where i,j € [N], a retiming
p from A; to A is said to respect
~ if we have
(el ~ €),) = (t < p(t')) for any
two events e/, e{, e E.
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Retiming Functions

@ Proposition 1. Given an STL formula ¢ and distributed signals (E, ~)
over N agent, there exists a consistent cut C C E that violates ¢ if and
only if there exists a finite A;j-local clock value t and N — 1 e-retimings
pn: In — h that respect ~, 2 < n < N, such that:

Lp(xl(t),xzopz_l(t),...,xNop,gl(t)) = false (1)

and such that p,, o p, : I, — I, is an e-retiming for all n # m. Here, ‘o’
denotes the function composition operator.
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Problem Statement

Problem Statement

Given € > 0, a distributed signal (E,~) over N agents, and a formula
¢ over the N agents, find N — 1 e-retiming functions pa, ..., py that
satisfy the hypotheses of Prop. 1 and s.t.

gp(xl(tl),xz(tz),...,XN(tN)) = false ()
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Problem Statement

Problem Statement

Given € > 0, a distributed signal (E,~) over N agents, and a formula
¢ over the N agents, find N — 1 e-retiming functions pa, ..., py that
satisfy the hypotheses of Prop. 1 and s.t.

gp(xl(tl),xz(tz),...,XN(tN)) = false ()

Solution: Transformation to SMT solving using uninterpreted real functions to
find a violating retiming.
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Monitoring Real Distributed CPS
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Exploiting Knowledge of System Dynamics

I T ; ; 3
[ o] —=+— Velocity-carl —e— SMT-normal
—_ LS Velocity-car2 —=— SMT-dynamics
« 2 S H -~
=~ 4 \ ) 2 a
g hy ," (]
~~ - s £
> b
2 - =
S 15l LY . s 1 .
g o
\ \ | \ o |
0 1 2 3
Time (s) Signal duration (s)
(a) Velocity profile of two cars. (b) Run time vs. signal duration.

o =(v1>1.6)V (v >13)
Knowledge of acceleration bounds



Outline of talk

© Fault-tolerant Decentralized Monitoring



o Decentralized Asynchronous Crash-Resilient Runtime
Verification (CONCUR'16)

e Decentralized Asynchronous Crash-Resilient Runtime
Verification (JACM'22) — Among 8 selected papers in 2022

Sergio Rajsbaum

Pierre Fraigniaud Corentin Travsers
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General Lower bound Results

Not all LTL formulas can be consistently monitored by a distributed monitor
with 4 truth values, even if monitors satisfy state coverage, and even if no
monitor crashes.

Not all LTL formulas can be consistently monitored by a distributed monitor
with 4 truth values, even if monitors satisfy state coverage, even if no monitor
crashes and even if the monitors perform an arbitrarily large number of rounds.




Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).




Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).

dp



Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).

Tp
o @



Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).

Tp
o O—@



Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).

Tp
e (») (%) (~p)



Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).

Tp
Op @ (») (=) (")



Alternation Number

We count the number of times that the valuation of a formula may change
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Alternation Number

We count the number of times that the valuation of a formula may change
from (called alternation number).

Tp
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Alternation number

The alternation number of an LTL formula ¢ is the following:
AN(p) = max {A(w) |w € ="}

where

Alw) = {A(W/) i [ er ] AL =]
0 if length(w) = 1

where w’ denotes the longest proper prefix of w. B




Obtaining Alternation Number

The alternation number of LTL formula ¢ is the length of the longest
alternating walk of the LTL4 monitor of ¢.




Obtaining Alternation Number

The alternation number of LTL formula ¢ is the length of the longest
alternating walk of the LTL4 monitor of ¢.

—a-r
true true
AN(@O(—a—r) V [(mal r) A Oa]) =




Global Consistency

Lower Bound Theorem

In order to monitor an LTL formula ¢ by a wait-free distributed monitor, we
need at least AN(¢) + 1 truth values to ensure global consistency.

Upper Bound Theorem

An LTL formula can consistently be monitored by a wait-free distributed
monitor in LTLaka, if k > [3(min(AN(g), n) — 1)].




LTL, Monitor Construction

Monitor for
O(—a—r) V[(ma U r) A Q3]

in LTLe.
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Outline of talk

@ Conclusion



Summary

Distributed RV under partial synchrony.
@ SMT-based solution.
@ Multicore optimization

@ Monitoring blockchains

Distributed RV for analog signals.

Crash-resilient RV.



Ongoing Work

Trade-off between accuracy and scalability.
o Over/under-approximation

Byzantine distributed RV.

Stream-based (1/0) distributed RV for network of DNNs.

Private distributed RV
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