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Message Passing Interface: Background
▶ MPI = “Message Passing Interface”
▶ a standardized library for writing

message-passing parallel programs
▶ in C, C++, or Fortran

▶ MPI: A Message Passing Interface
Standard
▶ v1.0 (1994), . . . , v4.1 (2023)
▶ https://www.mpi-forum.org

▶ universal in scientific/HPC computing
▶ weather prediction, climate change
▶ design of aircraft, engines, buildings
▶ genome sequencing
▶ prediction of protein structure
▶ certifying nuclear reactor safety
▶ monitoring/simulation of nuclear weapons
▶ prediction of seismic activity

Univ. Delaware Verified Software Lab
Aurora supercomputer
Argonne National Laboratory, USA

3 S.F.Siegel ⋄ FRIDA 2024 ⋄ Challenge Problems in Verification of MPI Programs

https://www.mpi-forum.org


MPI Program Model

▶ an MPI program consists of multiple processes

▶ each process has its own memory (no shared memory)

▶ think of each process as a program running on its own computer

▶ the computers can have different architectures

▶ the programs do not even have to be written in the same language
▶ however, in most cases:

▶ programmer writes one generic program
▶ compiles this
▶ at run-time, specifies number of processes
▶ run-time system

▶ instantiates that number of processes
▶ distributes them where they need to go

▶ a process can obtain its unique ID (“rank”)
▶ by branching on rank, each process can execute different code
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Problem Statement

▶ Goal: a mechanized way to verify the functional correctness of C/MPI programs

▶ This implies a way to specify such programs. Two approaches:

1. contracts [see my CAV talk tomorrow]
2. functional equivalence with sequential program

▶ What I can do now: small scope verification
▶ using model checking and symbolic execution techniques
▶ place (small) bounds on nprocs, input sizes
▶ verify assertions, deadlock-freedom, functional equivalence
▶ verify a function conforms to its contracts
▶ tools: MPI-Spin, TASS, CIVL Model Checker — https://civl.dev

▶ What I really want
▶ verification for arbitrary number of processes
▶ with minimal manual effort (annotations, hints, proof assistant interactions. . . )
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Hello, world

#include<stdio.h>

#include<mpi.h>

int main() {

int rank, nprocs;

MPI_Init(NULL, NULL);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs); // get the number of procs

MPI_Comm_rank(MPI_COMM_WORLD, &rank); // get this proc’s PID

printf("Hello from MPI process %d of %d!\n", rank, nprocs);

fflush(stdout);

MPI_Finalize();

}

> mpicc -o hello.exec hello.c

> mpiexec -n 4 hello.exec

Hello from MPI process 0 of 4!

Hello from MPI process 3 of 4!

Hello from MPI process 1 of 4!

Hello from MPI process 2 of 4!

>
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Message channels: conceptual framework

P0 P1

P2
A

B

C DE
F

G

H

▶ the state of a communicator with 3 procs

▶ every communicator is isolated — has its
own state
▶ messages from one communicator are

never picked up by an operation from a
different communicator

▶ between any 2 procs, there is a
p2p message channel
▶ including from proc to itself (rarely used)

▶ send enqueues message

▶ recv dequeues message

▶ mostly a FIFO queue
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Tags

P0 P1

P2
A

B

C DE
F

G

H

01

2 9

2

0

2

0

tag

▶ each message has a tag

▶ an int specified by the sender
▶ the receiver may specify a tag

▶ or can specify “any tag”

▶ if P2 issues recv from P0 with tag 1
▶ P2 will receive message B
▶ the first (oldest) message in queue with

matching tag

▶ if P2 issues recv from P0 with “any tag”
▶ P2 will receive message A
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MPI_Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf address of send buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
dest rank of destination process (int)
tag integer to attach to message envelope (int)
comm communicator (MPI_Comm)
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MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)

tag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object (MPI_Status*)

▶ count must be at least as large as count of incoming message
▶ otherwise, undefined behavior

▶ status: object to store envelope information on received message
▶ source, tag, count
▶ if you don’t need it, use MPI_STATUS_IGNORE
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Example: cyclic exchange: cycle1.c

Processes attempt to exchange data in a cycle (ring).
Everyone first sends to their right, then receives from their left.

#include<stdio.h>

#include<mpi.h>

int main() {

int nprocs, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

const int right = (rank + 1)%nprocs, left = (rank + nprocs - 1)%nprocs;

int rbuf, sbuf = 100 + rank;

MPI_Send(&sbuf, 1, MPI_INT, right, 0, MPI_COMM_WORLD);

MPI_Recv(&rbuf, 1, MPI_INT, left, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc %d: received %d\n", rank, rbuf);

MPI_Finalize();

}
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Synchronization and potential deadlock

▶ cycle1.c has a problem
▶ a send operation may block until a matching receive is called

▶ buffer space is finite

▶ each send may be buffered or may be forced to synchronize

▶ a correct program will behave correctly regardless of how these decisions are made
▶ to correct the cyclic exchange. . .

▶ good: make even processes send first; odd processes receive first

▶ better. . . this situation is so common, MPI provides a function to deal with it
▶ MPI_Sendrecv combines one send and one receive operation into a single command
▶ both operations execute concurrently
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MPI_Sendrecv

MPI_Sendrecv(sbuf, scount, stype, dest, stag,

rbuf, rcount, rtype, source, rtag,

comm, status)

sbuf address of send buffer (void*)
scount number of elements in send buffer (int)
stype data type of elements in sbuf (MPI_Datatype)
dest rank of destination process (int)
stag integer to attach to message envelope (int)
rbuf address of receive buffer (void*)

rcount length of receive buffer (int)
rtype data type of elements to be received (MPI_Datatype)
source rank of sending process (int)
rtag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object for receive (MPI_Status*)
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Correct cyclic exchange using MPI_Sendrecv: cycle.c

#include<stdio.h>

#include<mpi.h>

int main() {

int nprocs, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

const int right = (rank + 1)%nprocs, left = (rank + nprocs - 1)%nprocs;

int rbuf, sbuf = 100 + rank;

MPI_Sendrecv(&sbuf, 1, MPI_INT, right, 0, &rbuf, 1, MPI_INT, left, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc %d: received %d\n", rank, rbuf);

MPI_Finalize();

}
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2-d Diffusion

▶ a rectangular metal plate
▶ initially 100◦

▶ temperature on perimeter kept at 0◦

▶ over time, heat diffuses out of plate

▶ u = u(x, y, t) temperature function

▶ 2d diffusion equation

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)

▶ discretization

u_new[i][j] = u[i][j]

+ k*(u[i+1][j] + u[i-1][j]

+ u[i][j+1] + u[i][j-1] - 4*u[i][j]);
0 1 2 3 4 5 6 7
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diffusion2d.c: sequential code (excerpt)

int nx, ny; /* dimensions of the plate */

double k; /* constant controlling rate of diffusion */

int nstep; /* number of time steps */

double ** u, ** u_new; /* two copies of temperature function */

...

void update() {

for (int i = 1; i < nx - 1; i++)

for (int j = 1; j < ny - 1; j++)

u_new[i][j] = u[i][j] +

k*(u[i+1][j] + u[i-1][j] + u[i][j+1] + u[i][j-1] - 4*u[i][j]);

double ** const tmp = u_new; u_new = u; u = tmp;

}

int main() {

for (int i = 1; i <= nstep; i++) {

update();

write();

}

}
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Parallelization of diffusion2d by column distribution

▶ block distribute the columns of u among the processes

▶ each process updates its columns
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diffusion2d_mpi.c (excerpt)

static void exchange_ghost_cells() {

MPI_Sendrecv(u[1], ny, MPI_DOUBLE, left, 0,

u[nxl+1], ny, MPI_DOUBLE, right, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(u[nxl], ny, MPI_DOUBLE, right, 0,

u[0], ny, MPI_DOUBLE, left, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

void update() {

for (int i = start; i <= stop; i++)

for (int j = 1; j < ny-1; j++)

u_new[i][j] = u[i][j] + k*(u[i+1][j] + u[i-1][j] + u[i][j+1] + u[i][j-1] - 4*u[i][j]);

double ** const tmp = u_new; u_new = u; u = tmp;

}

int main() {

for (int i = 1; i <= nstep; i++) {

exchange_ghost_cells();

update();

write();

}

}

See diffusion2d2.mp4.
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Challenge 1

▶ construct mechanized proof that diffusion2d_mpi.c is functionally correct
▶ for any nx, ny, nprocs

▶ correctness is specified by
▶ functional equivalence with diffusion2d.c, or
▶ any other reasonable way (e.g., a contract)

20 S.F.Siegel ⋄ FRIDA 2024 ⋄ Challenge Problems in Verification of MPI Programs



An attempt to verify a simple cyclic exchanger

▶ Ziqing Luo & I tried to verify a simple message-passing program performing a repeated
cyclic exchange

▶ Second International Workshop on Software Correctness for HPC Applications (2018)

1 int rank, nprocs, nsteps;

2 double rbuf, sbuf;

3 #define LEFT(pid) ((pid)>0 ? (pid)-1 : nprocs-1)

4 #define RIGHT(pid) ((pid)<nprocs-1 ? (pid)+1 : 0)

5 ...

6 void exchange() {

7 int t = 0;

8 while (t < nsteps) {

9 send(&sbuf, RIGHT(rank));

10 recv(&rbuf, LEFT(rank));

11 sbuf = rbuf;

12 t++;

13 }

14 }
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An attempt to verify a simple cyclic exchanger
Owicki and I and most everyone else thought that

the Owicki-Gries method was a great improvement over
Ashcroft’s method because it used the program text to
decompose the proof. I’ve since come to realize that this
was a mistake. It’s better to write a global invariant.
. . . Ashcroft got it right.

— Leslie Lamport

▶ we attempted a mechanized proof of C code using a global invariant
▶ ACSL, Frama-C+WP: verify invariant preserved by each atomic step of a process

▶ variables represented as arrays of length nprocs

▶ extra array for control location of each process

▶ message buffers represented as arrays

▶ invariant relates all of above
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Frama-C + WP Verification of Cyclic Exchange: Excerpt

/*@ axiomatic OracleSpec {
  @   logic double oracle(int t, int i);
  @   axiom oracle_ax: \forall int t,i; t > 0 ==> 
  @           oracle(t-1, LEFT(i)) == oracle(t, i);
  @ }
 */

//@ . . . 
//@ predicate inv1 = \forall int i; 0 <= i < nprocs ==>
                size[i] == 1 ==> chan[i] == oracle(sc[i]-1, i)

//@ . . . 
//@ predicate inv2 = \forall int i; 0 <= i < nprocs ==>
                       rc[i] == sc[LEFT(i)] - size[LEFT(i)];
//@ . . .

#define inv (. . . inv1 && inv2 && . . .)
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Frama-C + WP Verification of Cyclic Exchange: Summary

▶ 54 lines of ACSL annotations for 17 lines of C code

▶ all verification conditions but 1 discharged with Why3, Alt-Ergo, CVC4
▶ one VC implying deadlock-freedom could not be proved by any automated prover

▶ we could prove it using CVC4 for nprocs ≤ 200
▶ we could prove it by hand
▶ Sebastiaan Joosten proved it using Isabelle (∼150 lines)

#define NPROCSB 20

#define LEFT(rank) ((rank) > 0 ? (rank) - 1 : nprocs - 1)

//@ ghost int sc[NPROCSB], rc[NPROCSB], sizes[NPROCSB];

int nprocs, nsteps;

/* note that inv0 and inv5 is not needed for proving the deadlock-freedom condition */

/*@ axiomatic FDL {

@

@ predicate inv1 = \forall integer i; 0 <= i < nprocs ==> 0 <= sizes[i] <= 1;

@ predicate inv2 = \forall integer i; 0 <= i < nprocs ==> 0 <= sc[i] <= nsteps;

@ predicate inv3 = \forall integer i; 0 <= i < nprocs ==> 0 <= rc[i] <= nsteps;

@ predicate inv4 = \forall integer i; 0 <= i < nprocs ==> rc[i]==sc[LEFT(i)]-sizes[LEFT(i)];

@ predicate inv6 = \forall integer i; 0 <= i < nprocs ==> (sc[i]-rc[i]==0) || (sc[i]-rc[i]==1);

@ predicate fdl = \exists integer i; 0 <= i < nprocs && ((sc[i]-rc[i]==0 && sizes[i]==0) || (sc[i]-rc[i]==1 && sizes[LEFT(i)]==1));

@

@ lemma bounded_free_of_deadlock : inv1 && inv2 && inv3 && inv4 && inv6 && 0<nprocs<=NPROCSB

@ ==> fdl;

@ } */
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Related Work

ParTypes
▶ A Type Discipline for Message Passing Parallel Programs

▶ Vasconcelos, Martins, López, Yoshida
▶ ACM ToPLaS 2022

▶ based on session types
▶ user specifies a communication protocol in a simple language

▶ this defines a type

▶ an algorithm checks that each process conforms to the protocol (has the specified type)

▶ works for deterministic programs like diffusion2d_mpi.c

▶ verifies deadlock-freedom, termination for any number of processes

▶ does not say anything about the computation
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Nondeterminism

▶ all examples so far are deterministic
▶ for a given input. . .
▶ any two executions are equivalent

▶ one can be obtained from the other by repeatedly transposing adjacent commuting transitions

▶ for any process p: sequence of process states of p is the same for any execution
▶ executions only differ by how actions from processes are interleaved
▶ this is known a priori because of the subset of MPI used

▶ in particular: each receive statement specifies its source

▶ many algorithms in scientific computing can be expressed deterministically

▶ but some algorithms require a process to receive from any source
▶ MPI provides a way to do this

▶ the source argument to MPI_Recv may be MPI_ANY_SOURCE
▶ a “wildcard” receive
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A classic example of a nondeterministic algorithm: Manager-Worker

▶ break up problem into finite set of tasks — with many more tasks than processes

▶ one process plays role of manager; remaining processes are workers
▶ manager

1. distributes one task to each worker
2. waits for any worker to send back result
3. processes result and sends new task to that worker
4. if no tasks remain, sends termination signal to worker instead
5. when all results have been returned and termination signals sent, finished

▶ worker

1. waits for task from manager
2. solves the task and sends result to manager
3. repeats until termination signal received

▶ Example (based on example from Using MPI): matrix multiplication: compute AB
▶ manager has A; every worker gets a complete copy of B
▶ a task: compute one row of AB
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Manager-Worker pseudocode
count := 0;
while count < P − 1 do

send ⟨count+ 1, A[count]⟩ to count+ 1;
count := count+ 1;

end while
i := 0;
while i < N do

⟨tag, T ⟩ := recv(any(source));
C[tag− 1] := T ;
if count < N then

send ⟨count+ 1, A[count]⟩ to source;
count := count+ 1;

end if
i := i+ 1;

end while

while true do
⟨tag, in⟩ := recv(0);
out := in ∗B;
send ⟨tag, out⟩ to 0;

end while

Manager Worker
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matmat_mpi.c: matrix multiplication, manager-worker, excerpt

void manager() { ...

// Broadcast entire matrix B to all workers...

MPI_Bcast(&b[0][0], L*M, MPI_DOUBLE, 0, comm);

// Send one task to each worker, unless you run out of tasks...

for (count = 0; count < nprocs-1 && count < N; count++)

MPI_Send(&a[count][0], L, MPI_DOUBLE, count+1, count+1, comm);

// Receive result, insert into C, send the next task, repeat...

for (int i = 0; i < N; i++) {

MPI_Recv(tmp, M, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

for (int j = 0; j < M; j++)

c[status.MPI_TAG-1][j] = tmp[j];

worker_counts[status.MPI_SOURCE]++;

if (count < N) {

MPI_Send(&a[count][0], L, MPI_DOUBLE, status.MPI_SOURCE, count+1, comm);

count++;

}

}

// send termination signals (tag=0) to all workers...

}
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Challenge 2

▶ Construct a mechanized proof that for any
▶ L,M,N ≥ 1,
▶ N × L matrix A and L×M matrix B,
▶ nprocs ≥ 2

▶ matmat_mpi.c terminates with C = AB on process 0.

A first step. . .

▶ a “LATEX proof”

▶ construction of a global invariant

▶ invariant under each atomic code block
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Variables used to model state of matmat_mpi.c

W = set of process ranks of workers

1. uj (j ∈ W ) : buffered messages from manager to worker j

2. vj (j ∈ W ) : buffered messages from worker j to manager

3. all variables in manager
▶ count, i, . . .

4. auxiliary data for manager
▶ Solved (set of int): set of tasks solved, initially empty
▶ Out (set of int): set of tasks sent out but solution not yet received

5. for each j, all variables in worker j
▶ tag, in, . . .

6. auxiliary data for worker j
▶ InWorker[j] (set of int): set of tasks that worker j is currently working on

▶ cardinality at most 1
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Auxiliary definitions used to express invariant of matmat_mpi.c

ToWorker[j] =
⋃

⟨t,V ⟩∈u[j]

{t− 1}

ToManager[j] =
⋃

⟨t,T ⟩∈v[j]

{t− 1}

InWorker =
⋃
j∈W

InWorker[j]

ToWorker =
⋃
j∈W

ToWorker[j]

ToManager =
⋃
j∈W

ToManager[j]
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The “core invariant” of matmat

Let disjoint be the assertion that says the 3(P − 1) sets InWorker[∗], ToWorker[∗],
ToManager[∗] are pairwise disjoint.

Let Φ denote the assertion

Out ∩ Solved = ∅
∧ Out ∪ Solved = {0, . . . , count− 1}
∧ Out = InWorker ∪ ToWorker ∪ ToManager

∧ disjoint

∧ (∀j ∈ Solved. C[j] = A[j] ∗B)

∧ (∀j ∈ W. ∀⟨t, V ⟩ ∈ u[j]. V = A[t− 1])

∧ (∀j ∈ W. ∀⟨t, T ⟩ ∈ v[j]. T = A[t− 1] ∗B).

Claim: Φ is invariant under each atomic block of matmat.
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{Φ}
count := 0; Out := ∅; Solved = ∅;
{0 ≤ count ≤ P − 1 ∧ Solved = ∅ ∧ Φ}
while count < P − 1 do

{0 ≤ count < P − 1 ∧ Solved = ∅ ∧ Φ}
send ⟨count+ 1, A[count]⟩ to count+ 1; Out := Out ∪ {count}; count := count+ 1;
{0 ≤ count ≤ P − 1 ∧ Solved = ∅ ∧ Φ}

end while
{count = P − 1 ∧ Solved = ∅ ∧ Φ}
i := 0;
{0 ≤ i ≤ N ∧ |Solved| = i ∧ count = min{i+ P − 1, N} ∧ Φ}
while i < N do

{0 ≤ i < N ∧ |Solved| = i ∧ count = min{i+ P − 1, N} ∧ Φ}
⟨tag, T ⟩ := recv(any(source));
C[tag− 1] := T ; Solved := Solved ∪ {tag− 1}; Out := Out \ {tag− 1};
{0 ≤ i < N ∧ |Solved| = i+ 1 ∧ count = min{i+ P − 1, N} ∧ Φ}
if count < N then

{count < N ∧ 0 ≤ i < N ∧ |Solved| = i+ 1 ∧ count = i+ P − 1 ∧ Φ}
send ⟨count+ 1, A[count]⟩ to source; Out := Out ∪ {count}; count := count+ 1;

end if
{0 ≤ i < N ∧ |Solved| = i+ 1 ∧ count = min{i+ P,N} ∧ Φ}
i := i+ 1;
{0 ≤ i ≤ N ∧ |Solved| = i ∧ count = min{i+ P − 1, N} ∧ Φ}

end while
{|Solved| = N ∧ Φ}
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Verification of Manager-Worker

▶ I believe this proof is correct

▶ how can it be formally attached to the source code and mechanized?

▶ how can the annotation burden and effort be minimized?

▶ what tools can help?
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